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Abstract

This report discusses the design and implementation of a highly stable digital temperature controller. The controller is

designed to be implemented for stabilisation of: Ultra High Finesse Cavities, Diode Lasers, Optical Equipment and for

the reduction of Blackbody Radiation Gradients in Atomic Chambers. Hobbyist microcontrollers, Block Systems and

High Level Languages were used to increase generality and reduce the technical barrier for development. A stability of

(3 ± 1)mK was obtained for an open system, with breadboard design. A prediction of (0.47 ± 0.16)mK stability was

obtained for a closed breadboard system. Significant reductions on this are predicted to be available by printing the circuit

onto a PCB.
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Chapter 1

Introduction

Quantum Technology has a large number of potential applications[37]. Many regard the first quantum technology to be

the development of the transistor[37], for which Shockley, Bardeen and Brattain were awarded the 1956 Nobel Prize in

Physics[36], since then the field of electronics has advanced rapidly, however, this field solely concerns itself with the

quantum nature of electrons. Many more quantum technologies can be developed when entire atoms can be manipulated,

such as: the Gravity Gradiometer[41], Optical Lattice Clock[34] and Quantum Magnetic Sensors[16]. These were initially

developed between 2001[41] and 2005[34], however, such experiments often consist of a vast arrays of fragile electronics

and optics[18]. This constrains the experiment to a lab and hence limits the usefulness of the application[31].

Throughout this report I will use a Portable Optical Lattice Clock for motivation and examples of usage, however, the

techniques developed in this report are very general and may be applied to any atomic physics experiment. Specifically,

optical lattice clocks are the next generation of clock technology[42]. The traditional atomic clock is a caesium clock and

these have been gaining an order of magnitude in accuracy every decade[31]. However, they are now reaching a lower

accuracy limit of 0.02ns per day[33], (a precision of ≈ 2 × 10−16) due to their Quantum Projection Noise[33][24]. As a

result of this accuracy there have been advances in the fields of Broadband Communication[34], GPS[26] [34] and Quantum

Mechanics[26]. In addition the second was redefined as,

“9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of

the ground state of the caesium 133 atom.”[25]

10
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Figure 1.1: A highly simplified Optical Clock Schematic. Laser light is initially generated using a tuneable diode laser,

the laser is in an External Cavity Diode Laser configuration[26]. Then this is locked to an Ultra High Finesse Fabry-Pérot

Cavity and electronic feedback lowers the ECDL linewidth to the Hz range. This cavity is a local oscillator, or clockwork

for the system. This laser is then used to interrogate an electronic transition in Sr. To achieve this atoms are cooled using a

permanent magnet Zeeman slower, then they are loaded into a MOT using additional optics (not shown). This then forms

a fundamental reference frequency.

Since time is a base unit[25], this has lead to reductions in the uncertainty of all derived units, such as the meter[25]. In order

to push the boundaries of science, development of the optical clock is essential. However, due to a host of processes such

as tidal movement[31], glacial melting[31] and atmospheric pressure fluctuations[31] the gravitational fluctuations around an

optical lattice clock would perturb the system too much to reach its full potential[31]. Putting the system in space allows

new tests of fundamental physics such as tests of Einsteins Theory of Relativity[45], Geophysics[45] and the Standard

Model[51]. However, this intrinsically requires a portable system.

Page 11 of 150
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1.1 Optical Clocks

Optical Clocks, like all clocks typically have a clock mechanism and a reference[2]. For a Personal Computer, the clock-

work is provided by the internal Quartz oscillator and the operating system will periodically check a time server for an

up to date time, thus providing a reference. In an optical clock the clockwork is also a local oscillator, this time in the

form of a very stable laser and the reference is an atomic transition[24]. Such clocks have a lower Quantum Projection

Noise than atomic clocks: firstly, because the frequency of operation is much higher[33], but also because the atoms are

in a lattice[8] and so the error is immediately averaged across the sample, reducing the measurement time compared to a

single Ion clock[8]. A schematic diagram of how an optical clock works is available in Figure 1.1.

1.1.1 The Atomic Reference

The atomic reference is the section of the clock that ensures that the measurements of time are locked to a fundamental

frequency. In this case the reference is obtained by manipulating the outer electron of Strontium through optical transi-

tions. Firstly, SrO is heated and turned into a hot vapour using resistance heating or other methods[45]. Then the atoms are

cooled using a permanent magnet Zeeman slower[45]. Zeeman slowers work by splitting the energy levels, progressively

bringing the atoms on resonance with a counter propagating laser beam, thus by scattering photons, the Strontium is

slowed[15]. Then the atoms can be loaded into a Magneto Optical Trap (MOT) which can cool and trap the atoms[22]. The

magneto section uses an Anti-Helmholtz configuration coils to trap the atoms. For optical part in strontium, two stages of

cooling are used, using progressively narrow linewidth transitions[45] to realise a cloud at micro kelvin temperatures[31].

The atoms can then be trapped in a 1D lattice[45] using additional optics. The atoms are then excited into the 3P0 state

using the clock laser. Assessing the florescence between 1S0 and 1P1 is then a measure of how many atoms were not ex-

cited during the clock interrogation[42]. The laser is offset, the process is repeated and comparison of the two florescence’s

generates an error for the clock laser[42]. The energy levels for Sr are shown in Figure 1.2.

1.1.2 The Optical Oscillator

The oscillator is formed using a diode laser. The diode laser is chosen because of its compact size, reduced additional

equipment and tune-able properties[26]. In order to keep the oscillations stable this is placed in a External Cavity set-up. A

diode laser has a wavelength dependant on a 2D parameter space consisting of temperature and current. By feeding light

Page 12 of 150
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Figure 1.2: Some of the energy levels used in Strontium Optical Clocks[42]. The colour of the transitions

roughly matches the visible colour, with some exaggeration of small differences. The full ground state is

1S1 2S2 2P 6 3S2 3P 6 3d10 4S2 4P 6 5S2. The dotted line shows the 698nm clock transition. In 88Sr a single pho-

ton transition is totally forbidden, however, for 87Sr this is weakly allowed due to hyperfine mixing; both leading to an

ultra-narrow transition, suitable for a time reference. The 461nm blue transition has a broad natural linewidth and is

used for first stage cooling[42]. The 689nm transition is used for second stage cooling. After the clock measurement any

remaining atoms in the 3P0 state are pumped to the 3S1 state, where they decay rapidly to the ground state[45].
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back into the cavity, the angle of the ECDL grating forms an additional parameter[26]. A region of space free of mode

hops is then located and the wavelength is held stable with linewidth of the order of 100kHz. This laser is then split into 3

parts, one is passed to the atomic reference to calculate an offset against a fundamental constant, one is passed through an

optical frequency comb to generate a highly stable microwave signal that can be read by analogue electronics and finally

one is passed into a Ultra High Finesse Optical cavity. The laser is then locked to to this cavity using a Pound-Drever

Hall technique[26] and by feeding an electronic signal back to the laser, the linewidth of the ECDL can be narrowed to

∼ 1Hz[45][26].

1.2 Temperature Stabilisation

Many of the components required in high precision atomic physics require temperature stabilisation. As discussed in the

first section of this chapter, often these experiments need to be portable, or have other constraints placed upon them. This

means that if a solution is to be accepted, it will need to be small, modular and power efficient, with a wide range of

applications. This project focused on the UHFC but for competeness a list of further applications is shown in Appendix C

1.2.1 Ultra High Finesse Cavity

Temperature stabilisation for the Ultra High Finesse Cavity used for the Sr clock laser in Birmingham was the main

motivation for my project. The cavity requires a high degree of thermal stability to achieve its design specification of

sub-hertz linewidth. Considering the that the resonant frequency for a Optical Cavity is given by[26],

fRes =
nc

2L
, (1.1)

and the thermal expansion of a material is given by,

∆L = Lα∆T, (1.2)
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where α is the thermal expansion coefficient. It is then possible to calculate the change in resonant frequency based on

the thermal expansion of the cavity. Firstly, differentiating Equation 1.1 and substituting for f0 gives,

δf =
∂f

∂L

∣∣∣∣
f=f0

δL (1.3)

= − nc

2L2
0

(1.4)

= −f0
L
δL, (1.5)

where the 0 subscript indicates the design point. Taking a linear approximation and substituting for ∆L gives,

∆f ' −f0
L

∆L, (1.6)

' −f0
L
Lα∆T, (1.7)

' − c

λ0
α∆T, (1.8)

and is therefore independent of the length of the cavity. Letting ∆T = 1mK, α = 2 × 10−6 and λ = 689nm,

which are typical values for this problem, gives an change of 8.7MHz. This is considerable given such a small thermal

change. Therefore, the cavity is made out of a mixture of ULE1 glass and fused silica as a compromise between this

effect and other sources of thermal noise[26]. Furthermore, the system is thermally and vibrationally isolated by placing

it in a vacuum system with multiple layers of heat shields[26]. In addition, active compensation is provided by means

of Peltier Elements and Thorlabs AD590 temperature sensors. This active compensation holds the system at the turning

point for the expansion co-efficient of the ULE glass, this is around 12oC [26]. This leaves a residual thermal coefficient

of 0 ± 30 × 10−9K−1 in the range (5 → 35)oC, with a minima at 120C [26]. Recalculating the Equation 1.8 with

α = (0, 1, 30) × 10−9 yields ∆f = (0, 0.435, 1.31)kHz. It has previously been estimated that if the cavity is within

10mK of the minima, the frequency dependence 50Hz/mK. Therefore, the active system must be able to hold the cavity

at this minima, with no long term drift and also be able to detect sub 1mK fluctuations in temperature.

1.3 Detailed Aims

There are many commercial temperature controllers available for atomic physics and so it is important to determine why a

new system is needed. These range from the temperature controllers provided with the diode lasers, such as the ThorLabs

1Ultra Low Expansion
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Specification TED200C WTC3243 Iguana Requirement Desired

Multi-Level Control 7 7 7 3 3

Accessible Algorithm 7 7 7 7 3

Maximum Output Current (A) 2 2.2 1 2 3

Output Current Step Size 10mA - 119nA 2mA 40µA

Physical Size (litres) 3.60 1.32[See a] 10.5 + 36.0[See b] 10.5 1.32

Non-PC Output 3 3 7 3 3

Numeric Output 3 3 7 7 3

Digital Output 7 7 3 3 3

Data Logging 7 7 3 3 3

Live Graphing 7 7 7 3 3

Suitable for non-UHFC applications 3 3 7 7 3

Theoretical Temperature Stability 1mK 0.9mK 1mK 1mK 0.1mK

Table 1.1: A table showing a comparison of the requirements for this system against currently available systems. As can

be seen no system on the market is will meet the requirements for temperature stabilisation of the UHFC.

Table Remarks
a Once placed in a control box
b Physical Size + Size of interface PC, excluding screen, keyboard and mouse
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TED200C system[50], to the commercial generic WTC3243[48], to the custom built Iguana Temperature Controller[26]. The

primary motivation for my project was stabilisation of the UHFC. Due to the amount of heat shielding this system requires

a very long integration time. As noted in Dr Johnson’s PhD thesis, this is has been achieved with analogue systems, but

it requires a very large bank of capacitors[26]. Since most of the ultra stable PI controllers available on the market are

analogue these simply cannot achieve the integration times required. The Iguana system is a digital PID controller based

on a micro-controller, it is currently used to stabilise the temperature of the UHFC, however, the system is large and

written in assembly language, making editing the system difficult and inaccessible. Furthermore, the system is single

level only and to avoid positive feedback across the UHFC’s multiple heat shields a multi-level algorithm should be used.

Lastly, the system requires a Linux Desktop for interface and programming.

It would be possible to re-program and adapt the current system, possibly reduce the size and raise the current limit,

however, due to recent developments, it would be far easier to create a: new, modular, well documented system, written in

an higher level language. If the code was made modular then any algorithm can be input without modifying the hardware.

This leads to the list of requirements shown in comparison Table 1.1.
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Chapter 2

Design of a Digital Temperature Controller

A digital temperature controller consists of five distinct sections:

1. the controller algorithm,

2. the processing unit,

3. the temperature detection system,

4. the temperature correction system and

5. the interface.

These are listed in the order in which they must be chosen. From requirements on a system it is possible to generate a list

of requirements for the algorithm, which then places requirements on the processing unit, which then places requirements

on the final three systems. In this chapter I will discuss the key parts of the design. Full circuit diagrams and detailed

discussions about component selection are available in the Appendices. At several points I was able to make use of

standard practises and protocols from control engineering and hobbyist electronics, everything else was developed from

scratch.
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Figure 2.1: The block diagram for a generic feedback control system. Conventionally, block diagrams start with the set

point, placed in the top left corner, then flow across the page towards the output[12]. Generic feedback systems such as

this are often modelled in two blocks: the controller and the system[20]. Disturbances may occur at any point, however, it

is easiest to model them as occurring just before the system[52].

2.1 Proportional, Integral and Differential Control

Many systems in laboratory environments require some form of active feedback in order to ensure that conditions in which

the experiment are performed remain stable across successive iterations of the experiment. If the conditions differ or are

not measured then reproducibility of the experiment is called into question. Furthermore, if they are not stable, then it

is not possible to attribute an observed change in the system, to a measured quantity. These feedback systems generally

fall within the domain of control engineering and some basic knowledge of control theory is often required in practical

laboratory work.

A basic feedback control system is shown in Figure 2.1. In this report I will use t as a time variable, s(t) to denote the set

point, r(t) to denote the difference between the set point and the response from the system, c(t) to denote the output by

the controller, e(t) to denote any disturbances in the system, u(t) to denote the response to the system and o(t) to denote

the system output.

The Proportional, Integral, Differential controller was first derived by Nicolas Minorsky as a proposed solution to the au-

tomatic steering of ships based on: the current position, the inertia of the craft and constant terms such as the windage[10].

Such controllers often offer the simplest solution to any control problem[3] and over 97% of regulatory controllers use PID

feedback[28]. Due to these reasons and for improved generality, I have chosen to implement a PID controller algorithm

for this temperature control system, however, I have implemented the algorithm entirely in code and making extensive

use of the classes provided in the c++ language; thus the algorithm can easily be replaced if detailed knowledge of the
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underlying processes are available.

2.1.1 PID Controllers in General

Deterministically the three terms are often described as representing: the current error, the past errors and a predication of

future errors[30]. The past error or integral term accounts for constant losses, therefore bringing the value onto the set point

exactly[12]; while the derivative, or future error, term is implemented for fast systems compared to their controller[30]. Al-

though, as shown during war time efforts, control loops are best analysed in frequency space and not deterministically[11],

therefore the following calculations will be in reciprocal space1.

2.1.2 Proportional Control

In any controller, a higher ratio of controller gain, Ac(f), to system gain, As(f), leads to a better stability2. Thus it is

important to set the proportional constant as high as possible without causing positive feedback.

Calculation of the Frequency Response of the System

The complete system will have phase and amplitude contributions from 4 elements, the measurement time, τm, leading to

a phase shift φm, the calculation time, τc, with phase shift φc, a phase shift though any analogue components, (Op-Amps,

Current Sources, etc.) φo and finally a phase shift in the though the controlled element, φs. The total phase shift φt is

given by the sum of these. By taking ratios, the phase shift for a fixed delay, with no frequency dependence is,

φ(τ, f) =
2πτ

T
= 2πτf. (2.1)

The calculation and measurement time can easily be estimated as 1ms for each. The phase shift through the remaining

electronics can be estimated as a 10µs delay. For a proportional controller, the controller gain is simply the proportional

constant, therefor the phase and amplitude contributions for the controller are known.

By assuming the controlled element thermalizes instantly and applying the first law of thermodynamics it is possible to

1See Modern Control Systems[20] and Instrumentation and Control Systems[12] for calculations in other spaces.
2A derivation for this is shown in section F.1
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(a) An example of the amplification of a signal though the controlled element. This particular plot is assuming that Equation 2.2, holds

true with m = 40.65g, c = 0.897J/g, P (t) = 4.5eiωtW .

(b) An example of the phase change through the system. This particular plot is assumes Equation 2.2, with an additional 2.7ms delay

for electronics.

Figure 2.2: Examples of phase changes in a controller system with active feedback.
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show that the temperature of the system, T , at time, t, for a periodic input power P (t), is given by3,

T (t) = −i︸︷︷︸
φs

×

As︷ ︸︸ ︷
1

ωmc
×P (t) + T1, (2.2)

where T1 is the initial temperature of the system. Thus the phase response, φs = −i = −90o and the amplitude response,

As = 1
ωmc , can be deduced. If the system does not thermalize instantly but does so over some time then there will be

an additional phase response. This additional response was correctly estimated to be ∼ 10s at the start of the project4.

Graphs showing the predicted amplitude and phase response for this system are shown in Figure 2.2

Limitations on the Proportional Gain

The controller gain, Ac, should be as high as possible for best controller performance, but, the total gain, Ac + As, must

also be less than or equal to unity when the total phase shift in the system is equal to π. Otherwise, unstable oscillations

will occur due to positive feedback[52]. This places an upper limit on the proportional gain and so additional control is

required5.

The intention is to design a system for which the dominant phase response is the controlled element rather than the

controller. Thus for the remainder of the design, the constraint that the controller shift should be less than 0.1% of the

total shift is applied, this allows a total processing time of ∼ ms.

2.1.3 Integral Control

It is likely that a thermal system there will be constant heat dissipation between the element and its surroundings, leading

to steady state losses and a constant offset from the set point[12]. Since these are low frequency (LF), the gain may be

improved, provided the high frequency (HF) response remains unchanged. Therefore, an amplification method must be

chosen such that it has a high LF response but low HF response. In the case of integral control, assuming that the controller

3As shown in section F.2
4It is shown in subsection G.2.2 to be around ∼ 30s.
5The optimum response for a system is given when the total phase shift is 2π

3
at the unit loop gain point[52]. From this it is possible to determine

a analytical value for the proportional constant, however, this requires a good analytical model of the system and if you have that, then there are better

algorithms than PID. As such analytical PID constants are rarely used in control systems.
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can output sufficient power, the gain limits are[52],

lim
f→0

g =∞, (2.3)

lim
f→∞

g = 0, (2.4)

making integral control an excellent choice and allowing constant offsets can be eliminated without affecting system

stability.

Limitations of Integral Control

The gain of an intergral controller is given by[52],

Aci =
Signal Out
Signal In

=
ki
∫ t′=t
0

eiωt
′
dt′

eiωt
=
ki
iω
. (2.5)

It is clear that setting ki as high as possible will decrease the convergence time, however, by setting ki = 1
τi

, the integrator

cut off frequency can be determined as 2πki. If this is too high then the phase change will increase and the system will

become unstable6.

2.1.4 Derivative Control

Correctly tuned derivative control will increase the transient performance of the system by introduce a phase lead of π/2

as can be shown by re-applying Equation 2.5[20]. The amplification is therefore, kdω, leading to a differential cut of

frequency, fd = 1
kd

. It is usual to select fd equal to the frequency which results in a total phase lag of 2π/3, fd = fc
[52],

extending the region of stability and compensating for integral control, making derivative control very useful for fast

systems[12]

However, the transient response is often of little interest in thermal systems where the phase lag is dominated by the

system and the set points are infrequently changed. Furthermore, in systems dominated by noise the derivative controller

often increases the sensitivity of the system to noise and is generally considered to make the system less stable. This

system was dominated by noise and so derivative control was not implemented.

6Setting ki = 0.1fc(φt), where fc(φt) is the frequency with total phase shift π, reduces the phase margin by less than 6o and is a common

choice[52]
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2.2 System Design

To carry out the PID calculation a two part digital system was implemented. An Arduino was used to interface with

Analogue To Digital and Digital to Analogue Converters and carry out the calculation. This was programmed in a modular

fashion so the controller algorithm could be changed. The Arduino was chosen because it will have a roughly constant

loop time of the order of a few ms, which is very suitable for temperature control. The Raspberry Pi was then chosen

as an interface unit. This duel approach allows the controller to have the benefit of a full Operating System, while still

retaining constant loop execution time7.

2.3 The Temperature Detection System

The performance of a temperature control system is often characterised by the ability to accurately measure the tempera-

ture at a sufficiently quick rate. The base unit of temperature is defined as,

“The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature

of the triple point of water”.[25]

It is of course very difficult to use this as a method of measuring temperature and it makes far more sense to use a calibrated

instrument[12]. It is very common practise to use either a 10kΩ NTC8 Thermistor or a Transistor based temperature

transducer[52]. Both devices rely on the strong temperature dependence of semi-conductors[12]. I will only discuss the

Thermistor in this report, but circuitry for the AD590 is shown in section D.4.

2.3.1 The 10kΩ Thermistor

It is well known that the resistance of most metals have a weak temperature dependence, ∼ 3× 10−3[52]. Since the shape

of the Fermi function is strongly temperature dependant[38] it is possible to develop non-linear temperature sensors using

semi-conductors[12] where the resistance can be approximated by a cubic equation. The Thorlabs 10k thermistor is a

common choice due to its low cost and 15s time constant when in air[49]. There are two possible circuits for determining

a voltage from a resistance.

7The details of this analysis and selection are shown in Appendix D
8Negative Temprature Coefficiant
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Potential Divider

(a) A basic potential divider used to generate

a voltage from a known resistance. The volt-

age at the output depends on the resistance of

Th1. This is easy to implement and no calcu-

lations need to be performed. However, this

circuit is very susceptible to noise on the 5V

line.

(b) A potential divider with noise rejection. C3 and C2 reject noise from the power

supply, C3 can be placed anywhere and rejects noise caused by high current com-

ponents, C2 should be placed as close to the divider as possible and rejects resid-

ual power supply noise. C1, R1 and Th1 all form a low pass filter. C1 should

be placed as close to the measuring device as possible as this rejects transmission

noise. The cut off frequency is temperature dependant and for a Thorlabs 10K:

f50oC
c = 4.4KHz and f0oC

c = 13kHz as derived in section F.5.

Circuit Diagram 2.1: Two methods of generating a voltage from a resistance using a potential divider. The first is simple

and easy to implement, while susceptible to power supply noise. The second is more complex, but is immune to most

noise.

The simplest and most common way to determine a voltage from a resistance is by using a Potential Divider as shown

in Circuit Diagram 2.1a. The voltage at the output of such a circuit is given by9,

Vo(Vi, Th1) = Vi
Th1

R1 + Th1
. (2.6)

Solving this equation for Th1 gives,

Th1(Vo)) =
R1

Vi

Vo(T ) − 1
. (2.7)

9As shown in section F.4
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The resistance and hence temperature, can then be determined by floating point operations on the Arduino, provided

Th1(T ) is known. Th1(T ) is normally given as a cubic equation on the data sheet[49].

Advantages The advantage of this system is its simplicity. As long as the 5V voltage is stable then there will be no

noise in the system. In addition a reasonably wide range of voltages, (1.1690 → 2.5000 → 3.6767)V is output for the

temperature range (0→ 25→ 50)oC.

Disadvantages Unfortunately any noise on the 5V line will directly translate onto the output with the appropriate scaling

factor, this can be avoided using Circuit 2.1b. Furthermore, any slow long term drifts in the 5V voltage will directly

translate onto slow drifts in the apparent set point for the system. To overcome this either: the voltage of the 5V lines is

measured, or a stable voltage supply used. Finally, while the (1.1→ 3.6)V range is good, it wasting 50% of the spectrum,

or 1 bit.

2.3.2 The Current Controller Method

An alternative method of generating a (0 → 5)V voltage from a resistance is to pass a constant current through it. This

can be achieved by measuring the voltage across a known resistance in series with the thermistor and using a feedback

loop to control the current such that this voltage does not change. One method of doing this is to use a difference amplifier

in series with a comparator as shown in Circuit 2.2.

Advantages This system can be configured so that the minimum temperature of the system leads to an output of 5V,

therefore the entire voltage range is used. In addition, this circuit rejects noise both 15V supply noise and drift (the 2.5V

supply may not drift).

Disadvantages Unfortunately, in practise implementation is difficult. Firstly, the resistance of a NTC thermistor will

rise to 32kΩ at 0oC, allowing a maximum current of 150µA, to avoid damaging the ADC. This is a very small current and

fluctuations in this must be held constant. Secondly, any current drawn by Op Amps and the output must be negligible,

therefore, the input impedance must be at least 0.5MΩ. For op-amps to function the current flowing in the feedback loop

must be high compared to the input leakage current. Since typical input impedance’s are ∼MΩ, the leakage current may

be comparable to the feedback current. Thirdly, a high frequency cut filter cannot be added at the output as it will affect
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Circuit Diagram 2.2: The constant current resistance measurement. The difference amplifier determines the voltage across

R1, this is then compared against a steady 2.5V signal. If the voltage across R1 is less than 2.5V, OA2 ramps up, lowing

the resistance of the MOSFET and allowing more current to flow and vica versa. The voltage on the output is simply

given by V = ITh1. In this circuit I = 64µA.
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Temprature (oC) Change in T (mK)
Visible with

Change in Voltage (V)
15 Bits 16 Bits 24 Bits

25 100 3 3 3 5.40E-03

25 10 3 3 3 5.40E-04

25 1 7 7 3 5.40E-05

25 0.1 7 7 3 5.4E-06

50 100 3 3 3 4.60E-03

50 10 3 3 3 4.60E-04

50 1 7 7 3 4.60E-05

0 100 3 3 3 4.60E-03

0 10 3 3 3 4.60E-04

0 1 7 7 3 4.60E-05

Table 2.1: A simplified table showing the visibility of small temperature changes across the range of operation of the

device. The table shows that 15 Bit conversion is suitable across the whole temperature range for stabilities of up to

10mK. After this point, there is little to be gained from 16 Bit and the move to 24 is therefore necessary.

the current flow. Finally, when the system was build unstable oscillations occurred due phase shifts in the system. All of

these issues can be fixed, however, for the sake of one bit, it is far simpler to implement a better ADC. For very stable

systems, it may be worthwhile if the 24 Bit ADC is too noisy.

2.3.3 Conversion to a Digital Signal

Once a voltage has been created, it is necessary measure this and produce a digital result. These devices are called

Analogue To Digital Converters (ADC’s). Assuming that the temperature detection method is a thermistor in a potential

divider configuration, it is possible to determine the accuracy of 15, 16 and 24 bit converters. The actual relationship is

very non-linear and depends on the absolute temperature as well as the change as shown in Figure 2.3. The resolution
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Figure 2.3: A semi logarithmic plotting the voltage difference between two temperatures for a range of temperatures for

a thermistor in a potential divider configuration. Three horizontal planes are shown, going from top to bottom these are

the resolution limit of a: 15 Bit, 16 Bit and 24 Bit ADC. The colour scale is linear and highlights the difference across the

temperature range (0→ 50)oC, with the highest sensitivity when R1 = Th1. This graph highlights the general shape of

the dependence, however, for numeric values please see Table 2.1
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of the 15 Bit Converter is 150µV ≈ 4mK resolution, the 16 Bit 76µV ≈ 2mK resolution and 24 Bit 300nV ≈ 5µK

resolution10. To achieve an accuracy of 1mK it is clearly required to use a 24 Bit Analogue to Digital Converter. A full

circuit diagram for this is available in Circuit Diagram D.1.

2.4 The Output

Any temperature controller must be able to both heat and cool the controlled element. Such devices are broadly split into

two categories, refrigeration and thermoelectric. Refrigeration devices are often substantially more powerful and able to

maintain higher temperature differences, however, these rely on adiabatic cooling[53] and the equipment required for this

is often large and lacks fine control. The alternative is Thermoelectric cooling. This relies manipulating the fermi surface

within a metal in order to transport heat[47]. The rate of heat flow from one side of the device to the other is then a linear

function of the current flowing through the device[47]11.

2.4.1 Thermoelectric Cooling

Thermoelectric cooling devices come in the form of small Peltier Elements, these thin devices transport heat from one

side of the device to the other and are able to sustain temperature differences of up to 70oC [40]. If the device is not

properly heatsinked then heat energy (or a lack of) will build up on one side of the device and the temperature limit will be

exceed. As a result these devices require a large heat sink, for longer periods of operation the heat sink must have suitable

conductivity to a large heat bath, such as the air in the room. By manipulating the current it will is possible to control the

heat flow on and off the controlled element such that the temperature is held constant.

2.4.2 Current Control For Thermoelectric Cooling

Controlling the heat flow requires an accurate current controller. This presented a technical challenge since the only

example of such a controller was the WTC3243 and the work was closed source. In addition the voltage output by the

DAC ranged between (0 → 5V ), making the negative current direction difficult to implement. It was possible to centre

the a new ground about 2.5V for the current controller, however, Peltier Elements can use up to 3A[40] and this would

10Resolutions are quoted for T = 25oC for other resolutions please see Table 2.1.
11The derivation for this is not relevant to the temperature controller and isn’t shown, however, a good description of the physics involved is provided

in The Oxford Solid State Basics by Steven Simon[47]

Page 30 of 150



Highly Stable Compact Digital Temperature Controller for use with Ultrastable Atomic Systems. Final Report

Circuit Diagram 2.3: The Current Controller Circuit for the Peltier Junction. M1 to M4 form a direction changer for the

flow of current through the Peltier Junction. When switch SW1 is its current position, the gate voltage on M1 and M3 is

15V , hence the P-Type, M1, is not conducting, while, the N-Type, M3, is conducting, the gate voltage on M2 and M4 is

0V, hence, by the same logic M2 is conducting and M4 is not conducting. Thus, the current flows through M2, then the

Peltier then M3. When the switch position is changed, the reverse argument holds, therefore the current flows through

the Peltier Junction in the other direction. M5 and R1 are the current limiter, the current flowing though the circuit is

determined by the voltage across R1, this is fed back and compared to the desired value, the current control signal is then

adjusted based on this value. If this signal goes up, the resistance of M5 goes down, allowing more current to flow and

vica versa.
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cause an unavoidable waste of P = IV = (2.5 × 3)W of power. Instead it is possible to flip the polarity of the Peltier

as shown in Circuit Diagram 2.3. The required feedback loop is simply a non-inverting amplifier and a comparator12.

This comparator can compare the voltage between a 0→ 5V signal and the voltage produced passing current though the

resistor, hence allowing the current to be controlled by a DAC.

2.4.3 Digital to Analogue Converter

Common digital to analogue converters come in 8 and 16 bit variants. The Arduino Nano can imitate a 8 Bit Converter,

using Pulse Width Modulation13. Unfortunately, the register required for PWM was in use and so a separate DAC was

used. The minimum step size on the 8 bit converter would take 9.1 minuets to change the temperature of the block by

1mk assuming no losses, while on the 16 bit converter would take 38 hours. Therefore a 16 Bit DAC is required for very

stable systems such as the UHFC, where the thermal constant is many hours. The AD5667R is a 16 Bit analogue to digital

converter with internal 2.5V reference and a full scale output of 5V. Since a internal reference is required for the 24 Bit

ADC and the cost of the chip similar to 8 bit versions, this can be used on all systems regardless of stability.

12Shown in Circuit Diagram D.2
13This is where the value changes between 0 and 5V very quickly so that on average the signal is the right value. A low pass filter can clean up the

voltage

Page 32 of 150



Chapter 3

Performance, Data and Analysis

In this chapter I will look at the performance of the temperature controller. Temperature controllers are limited by a

number of factors, including their transient response, their response to noise, any sources of drift or shift and the accuracy

with which they can modify the temperature. I will open the chapter with a discussion of real temperature noise and how

this can be differentiated from other sources of noise. I will then look at the sources of drift and shift. Finally, I will

demonstrate how temperature fluctuations cause unstable laser emission and how a temperature controller can fix this1.

3.1 Sources of Noise to the Signal

Any real system suffers from noise and the temperature controller discussed in this report is no different. There are four

types of noise in this controller: there is electrical noise introduced in the analogue electronics, there are digital rounding

errors due to conducting mathematics in binary at fixed precision, there are real temperature fluctuations and then there

are temperature fluctuations introduced by the system.

3.1.1 Real Temperature Fluctuations

The real temperature fluctuations must be calculated for each system. Of course due to the nature of the statistical physics,

it is possible for very small systems2 to have real noise fluctuations, however, it is impractical to connect this temperature

1The transient response may also be of interest and so is included in section G.2
2In this case small refers to systems where the number of atoms is much less than Avagdro’s Number.
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controller to such a system. In this section we will consider temperature fluctuations that are introduced by an unwanted

system. The worst case scenario is a step change in the outside temperature. This could be achieved by a Air Conditioning

unit turning on, or a piece of lab equipment starting up and blowing hot air over the controlled element.

Room temperature air can fluctuate by 1oCs−1, See. 3 however, it will take a reasonable amount of energy to change the

temperature of the block and the specific heat capacity of air is low. Thus the real temperature fluctuations on the block

will be many orders of magnitude below this. By turning the controller off and graphing the temperature, fluctuations of

around (30− 40)mK where observed with period of the order of on a timescale of ∼ 40s for an aluminium block of size(
(3.0× 5.0× 1.0)± (0.1)3

)
cm3. Of course, by insulating the system this can be reduced.

3.1.2 Electrical Noise

Often the controller and the controlled element cannot be collocated for practical reasons. This means that the wire

connecting the two devices may act like an antenna and pick up interference. The AD590 temperature sensor overcomes

this by outputting a current and Analog Devices have released an application note (AN-273) detailing how to overcome

any residual noise[29].

Low Pass Filter

In the case of the thermistor the addition of a 4.7nF capacitor will reject high frequency noise, as discussed in section 2.3.

4.7nF is chosen because depending on the temperature this will reject noise above ∼ 4.4kHz, since a loop of the control

program takes ∼ 1ms this is well above the sample rate and so there will be no loss of information. In this case of the

16 Bit converter this leads to a 3.0 ± 0.9 reduction in noise amplitude on a breadboard as shown in Figure 3.1. Using

Table 2.1 equates to ∼ 50mK.

The 24 Bit converter does not feature an internal oscillator and so it must be driven by a 2MHz clock. This high fre-

quency signal can couple between connections, in particular the input to the ADC as shown in Figure 3.1c. Furthermore,

when the ADC register is read, SCLK can also couple, this leads to noise upwards of 580mV peak to peak as shown in

Figure 3.2a. Fortunately the ADC reads the voltage at the quietest part of the signal (shown in Figure 3.2). Adding the

low pass filter lead to a (6.3±1.6) reduction in noise during the measurement period, TC , as shown in Figure 3.2b. Using

Table 2.1 this equates to ∼ 200mK.

3Derivation shown in section F.3
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(a) The noise on the input to the 16 Bit ADC without a low

pass filter capacitor. Fluctuations of (10 ± 3)mV are ob-

served, these are due to the cables picking up random inter-

ference at the mV level. Unfortunately due to technical lim-

itations on the oscilloscope a better magnification was not

available.

(b) The noise on the input to the 16 Bit ADC with a low pass

filter capacitor. Fluctuations of (3 ± 3)mV are observed.

This is a significant reduction from the Figure 3.1a and shows

that the 4.7nF capacitor works as expected.

(c) To try and get a better magnification in Figures a) and b) the oscilloscope was capacitively coupled to the circuit. This trace is for

the 24 Bit ADC, but as can be shown by contrasting with Figure 3.2b (which is in all other ways identical) there is a clear amplification

of the noise. As such the scope had to be directly coupled to the circuit and the magnification was limited. Also visible in this trace is

that there is some interference between the 2MHz clock and the input on the 24 bit ADC.

Figure 3.1: Scope traces showing the noise on the input to the analogue to digital converters. In Figure 3.1b and 3.1b the

yellow trace is an output from the Arduino, changing state just before a measurement is taken, the blue trace is the input

to the ADC. In Figure 3.1c, the yellow trace is the 2MHz clock to the 24 Bit ADC and the blue trace is the input to the

24 Bit ADC.
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(a) The noise on the input to the 24 Bit ADC without a low pass filter. The fluctuations are a superposition of: random interfer-

ence; interference from the 2MHz clock; and interference from the SCLK and data out. TR indicates the time in which the

ADC is being read and there is a clear increase in noise due to this, TC indicates the time in which the ADC is measuring the

voltage. TC is carried out in the quietest part of the signal, this would not be the case if the ADC was continuously read.

(b) The noise on the input to the 24 Bit ADC with a low pass filter, there is a clear reduction in noise amplitude from Figure 3.2a.

TC and TR are defined as before. As before the voltage is measured in the quietest part of the signal, where (8 ± 2)mV

fluctuations occur, elsewhere fluctuations up to (50 ± 5)mV occur.

Figure 3.2: Oscilloscope traces showing noise on the 24 bit converter.
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Additional Noise Reduction Techniques

To further reduce the noise the temperature can be averaged over a N point moving average. N must be chosen so that it

doesn’t hide any real temperature fluctuations. The temperature fluctuations can be suppressed by insulating the system

and limiting current through the Peltier element. Since the system knows when it is stable, it is possible to then limit

the Peltier from changing by more than a specified amount, although this isn’t implemented. The noise will be further

reduced if the system is placed on a PCB with a ground plane. Averaging before the controller algorithm will decrease

the response to noise at the cost of increasing the phase margin. Noise on the voltage lines is discussed in section G.1.

Other Sources of Noise

The output must be reasonably stable, however, in a thermal system, high frequency signals on the output will be imme-

diately be averaged by the Peltier element since the response is slow. One such example is 100kHz noise through the

Peltier element as shown in Figure 3.3. This signal is caused by positive feedback in the current controller circuit (Circuit

Diagram D.2). Lastly, it is important to determine the noise due to rounding errors and the noise to to floating point

arithmetic. Floating point is accurate to 8 decimal places[21] and the code is designed so that this shouldn’t be exceeded.

This gives a realistic temperature control limit of 1µK. Finally, there is quantisation noise, but since the noise in larger

than this, it should average out.

Electrical Noise Conclusions

It can be concluded that the 16-Bit system can be used without considering noise in too much detail, without averaging,

provided the 4.7nF is installed. If 24 Bit precision is required, then the system should be insulated and an appropriate

average time calculated.

3.1.3 Possible Sources of Long Term Drift and Shift

The set point on the temperature controller is digital. This means it simply cannot drift, however, if the analogue set-point

is enabled then there may be some drift, this is why it is important to disable the analogue set point when it is no longer

required. In addition the analogue section of the controller may experience drift and shift. The analogue output section
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Figure 3.3: Noise through the Peltier Junction. In yellow is the signal passing though the Peltier junction, with any DC

components removed, there are 700mV oscillations at 100kHz; in blue is the loop signal from the Arduino, showing that

this signal is independent of any other high frequency oscillations and in red is a Fourier transform of the yellow signal.

may drift or shift, however, this is of little importance since the controller the PID algorithm will account for this by

design. All that remains if the shift on the temperature sensor.

Thermistor based Temperature Sensor

Connector As the temperature in the room varies, so will the resistance of the cables connecting the thermistor. These

cables are generally around 50Ω, with temperature co-efficients of around ∼ ×10−3[52], therefore the change will be 0.05

in 103 →∼ 0.01mK.

Resistor The resistor used in the potential divider will also experience a temperature shift, using specialist components

this can be reduced to 230µK per degree ambient change. In an analogue PID controller, every component would shift

like this and so the effect would become compounded, causing macroscopic fluctuations and set point drifting. In this

digital system, this is the only component that experiences a shift. To avoid this the controller can either, regulate its own

temperature to within a few mK, or calculate the shift and correct for it.
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Voltage Fluctuations Finally, long term voltage fluctuations on the 5V line will appear directly on the temperature

measurement. By connecting the 5V line to an ADC it is possible to monitor these voltage fluctuations and account for

them. The 16 Bit ADC is used for this, therefore, the temperature cannot drift by any more than 2mK. The same applies

to the 24 Bit 2.5V line. If a better stability is required, then a more stable power supply must be used.

AD590 Temperature Sensor

In the AD590, only the resistance of the resistor will shift, as before this can be calculated and accounted for as before.

3.1.4 Stability given a perfect system

Given a well insulated system, self monitoring, stable voltage supply and correct PID constants, then the system will be

limited by the length of the average. The observed stability is (3± 1)mK, with a 250ms average time, extrapolating to a

1s average time gives a theoretical stability of 3mk×
√

.250
1 = 1.5mK and for a 10 second average (3±1)mk×

√
.250
1 =

(0.47 ± 0.16)mK. Hence sub micro kelvin stability is possible as long as the time constant of the system is well above

10s.

3.1.5 Observed Stability

A perfect system to asses the stability does not exist and so a lower bound on the performance was calculated using a

worst case system. Such a stability is achieved when the controlled element is small, with a large degree of airflow. An

aluminium laser diode mount, of dimensions
(
(3.0× 5.0× 1.0)± (0.1)3

)
cm3, with a fan blowing air across it, was used.

The temperature was set to 25oC, which was (4± 2)oC above the measured room temperature. The PID constants were

optimised as shown by the critical damping of the system in Figure 3.4. I then achieved a stability of 25oC ± 3mK as

shown in Figure 3.5.

3.2 Application Example - A Laser Diode System

As discussed previously in section C.2, in most atomic physics experiments it is of crucial importance to keep the linewidth

of the laser systems as low as possible. There of few experiments where it is of more importance than the Optical Clock,

where linewidths of 1.37Hz or less are often used[26]. In this section, for the ECDL system in use for the 689nm
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Figure 3.4: Temperature data for an open laser diode system when set at 2 different set-points. This graph shows the

non-linearity of the temperature control system. The two pieces of evidence are the under damping and larger oscillations

when at the higher set-point. Because the system is non-linear, different PI parameters are required at each temperature

for the best accuracy. This deviation is only small and so for most cases the same parameters can be used, provided that

the temperature is not changed to drastically.
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Figure 3.5: Temperature data for an open laser diode system when set at once the system is stable. This graph shows

the stability of the system even for a small element with no insulation and a reasonably short averaging time of 250ms.

The oscillations that remain are a mixture of real thermal fluctuations caused by changes in the air temperature passing

the device and electrical noise. For a larger, more insulated system, the thermal response time for 1mK change would be

longer and therefore a longer average could be used, making the system less responsive to electrical noise and hence more

stable.

Page 41 of 150



Highly Stable Compact Digital Temperature Controller for use with Ultrastable Atomic Systems. Final Report

re-pumper lasers in a Neutral Strontium Optical Clock, I will show how the frequency stability of this mode can be

dramatically increased with appropriate temperature stabilisation4.

3.2.1 Frequency Stability

Temperature normally changes very slowly and so the effect is a slow drift in the laser frequency occasionally passing

though regions of mode hops. In an hour, ambient room temperature changes of 2oC are not uncommon. By modulating

the set-point on the controller, the ECDL temperature was modulated and a temperature dependence found. Care was

taken to use sinusoidal variation and modulate through a small amount, as step changes in temperature can kill a laser

diode. The effect of drifting temperature is shown in Figure 3.6a. When an analogue temperature controller is connected,

the frequency is then held constant regardless of room temperature changes as shown in Figure 3.6b. However, with the

analogue controller, some instability remains and this was not present when the system was connected to the temperature

controller presented in this report as shown in Figure 3.6c, although it must be stressed that the effect may only be slight

since current noise is of a similar magnitude to the temperature noise when the WTC3243 is connected.

3.3 Review of the System

In section 1.3 I discussed the key requirements for a new temperature controller, including: multi-level control, outputs of

several amps, stability at 1mK and output both without and without a PC. While not implemented, multi-level control is

available due to the modular nature of both the code and the hardware. The use of high level languages such as C++ make

the code easy to edit and the use of hobbyist micro-controllers make the system easy to use. The system met all of the

design goals, as shown in Table 3.1. The project is complete in the sense that a generic temperature controller has been

designed that performs as required. What remains is to implement the system onto the UHFC and any other projects that

require it, unfortunately, designing the current regulator and getting below 10mK stability took longer than anticipated

and so this implementation was not completed in the required time-frame. Overall, the project was successful and the

temperature controller met its aims.

4A theoretical explanation for this behaviour is covered in section F.6
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(a) Set-point modulation at t = (38±1)s, (2±0.2)oC peak to temperature change. The yellow line shows the shape of the temperature

change, the blue line shows the frequency of the laser diode. If the laser frequency exceeds 441.29THz it loops though from the bottom.

It can clearly be seen that temperature fluctuations affect the laser emission as predicted.

(b) Here the ECDL is held at a constant temperature using a WTC3243 chip, as can be seen the frequency is very stable. There are high

frequency changes due to current instability, but these are superimposed upon very small, longer term oscillations. These oscillations

are due to the instability in the analogue WTC3243 chip.

(c) Here the ECDL is held at a constant temperature using a the controller presented in this report. There are still high frequency changes

due to current instability, but the small, longer term oscillations are no longer visible, even over the longer measurement period.

Figure 3.6: Oscilloscope traces showing the effect of temperature control on a sophisticated ECDL
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Specification Iguana Requirement Desired Achieved

Multi-Level Control 7 3 3 3[See a]

Accessible Algorithm 7 7 3 3

Maximum Output Current (A) 1 2 3 2 (8)[See b]

Output Current Step Size 119nA 2mA 40µA 40µA[See c]

Physical Size (litres) 10.5 + 36.0[See d] 10.5 1.32 1.32[See e]

Non-PC Output 7 3 3 3

Numeric Output 7 7 3 7

Digital Output 3 3 3 3

Data Logging 3 3 3 3

Live Graphing 7 3 3 3

Suitable for non-UHFC applications 7 7 3 3

Theoretical Temperature Stability 1mK 1mK 0.1mK 0.47mK[See f]

Table 3.1: A table comparing actual performance against the aims. It clearly shows that the system meets all the require-

ments and matches most of the desired goals.

Table Remarks
a While not implemented, it has been demonstrated that this is possible.
b 2A was demonstrated, but up to 8A is theoretically possible. Careful heat-sinking and higher supply voltages will be require if this is desired. It

may also be advisable to drive the P-Type MOSFETs with a gate voltage higher than the supply for the current regulator.
c Max Current / 2No Bits on DAC

d Physical Size + Size of interface PC, excluding screen, keyboard and mouse
e Predicted value once placed onto a printed circuit board
f Theoretical, 3mK demonstrated for an open system
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Chapter 4

Conclusions

I started this report by highlighting the need for development in the area of Atomic Physics, I then took the specific case of

the Optical Clock and showed the need for its development. I then demonstrated the need for accurate temperature control

for the Ultra High Finesse cavity and explained the motivation for the project. Finally, I closed Chapter 1 by laying out

the requirements for a temperature controller and comparing against both commercial and non-commercial systems.

I introduced Chapter 2, with a discussion of the generic PID controller paying particular attention to its suitability for

temperature control. I estimated the required response times for my system and used this to determine requirements for

the electronics I used. I then showed and discussed the key circuitry that was used.

In Chapter 3, I discussed some of the limitations of the system. I discussed real temperature noise and how a differen-

tiation was made between that and electrical noise. I showed that the system had a stability of (3 ± 1)mK in an open

environment and predicted a stability of (0.47 ± 0.16)mK for a closed system. It was then demonstrated that the laser

emission frequency drifts over time due to temperature fluctuations. I showed how a digital temperature controller can

be implemented to overcomes these fluctuations. I closed Chapter 3 with a comparison of the system against the project

aims and discussed the potential for further work. Finally, in this chapter I have reviewed the report and highlighted my

key result of (3± 1)mK stability for an open system an (0.47± 0.16)mK stability for a closed system.
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Appendix B

Definitions

Please see below for the definitions of items used in this text.

B.1 Commonly Used Variables

Ac = Total Controller Gain

As = Total System Gain

c = Heat Capacity

cl = Speed of Light

f = Frequency

g = Total Gain

i = Imaginary Unit Vector

kp = Proportional Gain

ki = Intergral Gain

kd = Differntial Gain

λ = Wavelenght

L = Lenght

m = mass

T = Temprature

t = Time

ω = Angular Frequency

U = Internal Energy

u = Unknown function

v = Velocity

Vi = Voltage In

Vo = Voltage Out

B.2 Acronyms

• AC : Alternating Current

• ADC : Analogue to Digital Converter

• BBR : Black Body Radiation

• DC : Direct Current
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• ECDL : External Cavity Diode Laser

• FFT : Fast Fourier Transform

• GPS : Global Positioning System

• HF : High Frequency

• Laser : Light Amplification by Stimulated Emmision

of Radiation

• LF : Low Frequency

• OS : Operating System

• PC : Personal Computer

• PCB : Printed Circuit Board

• PID : Proportional, Integral, Differnetial [Con-

trol(ler)]

• UHFC : Ultra High Fineese Cavity

• ULE : Ultra Low Expansion Material

• UoB : University of Birmingham

• USB : Universal Serial Bus
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Appendix C

Further Applications

C.1 Atomic Chamber

The strontium atoms used for the reference section of this experiment are held at sub millikelvin temperatures in a vacuum

system, however, the chamber that houses this vacuum system is several orders of magnitude hotter. This means that

it emits black-body radiation (BBR) onto the cooled Strontium atoms[34]. The BBR shift was reported in 2013 to be

one of the largest irreducible shifts facing optical clock development[2]. The effect can be substantially reduced by

cryogenic cooling of the clock and has been successfully attempted in Japan[35], although, since characteristic BBR has

wavelengths 100x longer than the optical transitions involved, the shift can be approximated by the DC Stark Shift with

∼ 1% accuracy[43]. This can be determined analytically and subtracted from the measured value[8]. However, this requires

knowing the temperature exactly. In addition if there are any temperature gradients across the chamber then atoms on one

side will be disproportionately affected in comparison to the other atoms. For small chambers chambers in compact

systems, there is heat dissipation from magnetic coils, lasers, resistance heating of SrO, etc. Since it will take time for

the system to thermalise, active compensation must be used to hold the system at a steady temperature.

C.2 Laser Systems

It is very well known that diode lasers have a strong temperature dependence[4]. It is normal lab practise to hold these

diode lasers in the region (15 → 60)oC with a stability of 10mK. In any atomic physics experiment it is common to
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have many such lasers which all have in-dependant analogue temperature control. Centralised digital control would offer

a much cleaner environment for laboratory work. Such a system should have graphing and data logging facilities.

C.3 Wider application of Temperature Stabilisation

The two systems discussed above and the UHFC are just three examples from the work on the Optical Clock in Birming-

ham where very accurate temperature control is required. If a system can be built that meets the requirements of all of

these systems it can generically be applied to many other experiments. From work with cold atoms, Portable Gravimeters

and Gradiometers require the laser and cavities to trap the atomic sample[18] and from the field of astronomy temperature

sensors are used to lock their optics to cavities[26]. A comprehensive list of examples could be longer than this report and

so isn’t included.
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Appendix D

Component Selection & System Design

Here I will discuss why the digital components were chosen and how they were implemented.

D.1 Selection of a Digital Controller

Digital systems require careful section of a processor unit. These units fall into two distinct categories, logic systems

and computer architecture[39]. Logic systems are designed for a specific application using gates such as NOT , AND

and OR [39] and therefore they cannot be modified easily and so computer architecture is preferred. Since this system

may be implemented on portable projects with size and power constraints, the processor is limited either a Mini-PC or

Micro-Controller.

As discussed in section 2.1.2, ms loop times are required1.Assuming 1000 instructions per loop, the processor clock

speed should be MHz. Furthermore, for optimum PID operation, each loop of the control algorithm must take roughly

the same amount of time since the PID parameters depend on the phase shift through the system. This limits the choice

to either: a) A Mini-PC with a GHz processor and carefully programmed scheduling daemon or b) A dedicated MHz

microprocessor with no operating system, running a single threaded program. (a) is theoretically possible, but (b) is far

easier to implement.

1Furthermore, thermal fluctuations can be up to 1Ks−1 (See section F.3 for details.) so for mK stability ms loop times are certainly required
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D.1.1 The Arduino

The Amtel ATmega range of microprocessors feature an AVR architecture processing unit which can run at up to

20MHz[7]. The AVR architecture is specifically designed to be compatible with high level programming languages such

as C++ and bespoke compilers have been designed, such as the avr-gcc. Furthermore, the Amtel ATmega328 is available

on prepackaged with a clock and USB interface on the Arduino Nano Revision 3[5]. The Arduino Nano is one of a family

of open source microprocessor boards that have been developed to lower the barrier of entry for microprocessor use[6].

These come complete with an Integrated Development Environment[5] and cross platform compiler. The low barrier for

entry makes the Arduino a superb choice for Physics applications where the user is likley to be technically minded but not

necessarily familiar with micro-controllers. Due to its small size, breadboard mounted capability the Arduino Nano was

chosen over other ATmega328 powered boards2.

D.2 Design

As shown in Table 1.1 it was desirable to keep the total size of the system small, while retaining both a non PC output,

and a PC output. Processing data to produce statistics, logs and graphs is often very CPU intensive and so to keep the

loop time as low as possible, it is desirable to move this onto a separate processing unit. These operations are likely to

only be conducted on one temperature controller at a time and so one unit can be used for controlling several Arduino’s.

A computer can be used for this, but a Raspberry Pi can make a much more permanent solution. The two devices can

then communicate over USB3. The leads to a 2 block system. Firstly, there is a controller that is able to accept set-point

modulation and informs the user if system is stable, this consists of a Arduino Nano and some additional electronics.

Secondly, there is an interface unit, that allows dynamic control, such as reprogramming the controller, changing the set

points, etc. A block diagram for the entire system is available in Figure D.1.

D.2.1 Interface

Two levels of interface have been programmed on the temperature controller. As a standalone controller the system has

been programmed to output the following data to the user, through a series of LEDs.

2Since the project began Arduino have released the Arduino Yun and Zero which may be of interest.
3There is a limit of 127 USB devices per PC, in practise no more than 50 controllers should be connected to a Pi
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Figure D.1: Information flow through the control system. Blue blocks represent those belonging to the temperature

controller. Coloured blocks are generally run on an optional computer or Raspberry Pi. These blocks that allow additional

features, such as tuning, monitoring, reprogramming etc. There are two options, remote and local, these correspond

to orange and purple blocks respectively. The yellow boxes are required for any form of monitoring. In this system

information flows from all directions towards the ‘Arduino Nano Control Loop’ placed centrally in the chart where it is

processed. The ‘Controller Level’ shows the feedback system employed for the temperature control: the new set point is

calculated as a voltage, converted to a current and passed through a Peltier Junction; this affects the temperature of the

system, which is fed back to the Nano and passed back to the PID controller.
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Powered This LED lights if the system is powered, it is inbuilt on the Arduino board.

Communicating These are also inbuilt LED’s and flash when the Arduino communicates over USB.

Loop active This LED changes state on every loop of the controller. If the led is not flashing then the controller has

frozen. This LED was added to assist debugging.

Connected to PC This LED indicates whether the Arduino is communicating the the User Interface program, developed

specifically for this controller.

Manual Setpoint Adjustment Enabled This LED indicates whether the user has enabled adjustment of the set point.

Stable This led lights when the system has remained within a specified range of its set point for a set period of time

(default is ±10mK for 500ms).

In addition, the use has the ability to enable a switch, which lights and causes the device to adjust the set-point based on

the setting of a potentiometer. Since this introduces noise, the switch disables this feature.

Dynamic Mode

The requirements for the controller include scope for a PC interface. To that end, I have developed a Graphical User

Interface (GUI) for the temperature controller. As discussed previously, because this is processor intensive it runs on a

Raspberry Pi4 separate from the temperature controller and connected via USB. The Pi can then allow direct access to

this GUI via a keyboard, mouse and screen (local mode); or the Pi can act as a Secure SHell server (SSH), allowing the

user to control the parameters from any networked computer (remote mode). The block diagram for this is available in

Figure D.1. The code used for the GUI is available in the appendix, it is well commented. Table D.1 shows a list of

features and which ones require the GUI available in dynamic mode.

D.2.2 The program flow

The Nano runs a single threaded program using classes to separate the control elements, hence the ‘Arduino Nano Control

Loop’ can be thought of as the main loop, a flow chart is shown in Figure D.2. This loop can be thought of as a three step

4Or any Linux/MAC/Windows installation provided python2.7 and the Arduino IDE are installed.
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Standalone With After After After

Function Controller GUI Re-Programming Re-Coding Re-Soldering

Maintain the temperature 3 3 3 3 3

Inform the user on exceeding this range 3 3 3 3 3

Control Peltier up to 1.8A 3 3 3 3 3

Initial set up 7 3 3 3 3

Adjust the set temperature temporarily 7 3 3 3 3

Change the PID constants temporarily 7 3 3 3 3

Change the required accuracy temporarily 7 3 3 3 3

View live temperature statistics 7 3 3 3 3

Graph output 7 3 3 3 3

Change default parameters 7 7 3 3 3

Change averaging time 7 7 3 3 3

Change between 16 and 24 bit precision 7 7 3 3 3

Control Peltier to 2.5A 7 7 7 3 3

Change the control algorithm 7 7 7 3 3

Control Peltier to 8A 7 7 7 7 3

Table D.1: A table showing the requirements to implement different features of the temperature controller. On the left is a

list of properties that it is possible to change, on the right is the mode required to do this. Re-Programing refers to changing

constants in the constants section of the Arduino code and then uploading this to the controller. This is required to change

default behaviours. Re-Coding means changing constants located elsewhere in the code, or perhaps implementing a new

class. Re-Soldering refers to changing passive component values.
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Figure D.2: A simplified structure of the main execution loop on the Arduino. The model is asynchronous and partially

interrupt based. On every loop the program checks to see an interrupt is waiting, if this check will take more than a few

microseconds then the program simply checks to see if the wait condition has been exceeded and runs the check once

every few seconds. This means that on most loops the loops the Arduino simply: evaluates a few if statements, reads

in data, calculates the new PID settings and finally, outputs the new correction value. This allows complex tasks to take

place, while keeping loop time low.
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process:

1. Collect information from the Analogue to Digital Converter,

2. Call the PID algorithm,

3. Outputting to the Digital to Analogue Converter.

After a specified number of loops it will run the ‘Arduino Nano Interface Loop’. This isn’t a real loop but a set of

statements that are executed only after a certain number of cycles. These statements will check whether the PC is still

connected and exchange information over USB if requested. If the PC is no longer connected then the data output will

be disabled to save CPU cycles. The full code is available in the appendices. I developed the code structure and each

of the major classes. Because the system was designed in a modular way I was able to build on several pieces of code

that had already been developed: the PID algorithm is fairly generic and is slightly modified from a Arduino Playground

Example released under the GPLv3 and written by Brett Beauregard[9]; the code to generate a 2MHz clock pulse for

the 24 Bit ADC was written by davekw7x as an answer to an Arduino Community Forum Question[17]; finally, the code

used to communicate with the 24 Bit ADC was written and tested by Iain MacIver as part of a investigation into MetGlas

Magnetic Shielding[1].

D.3 The Final Circuit

The final circuit is split into three parts to make it easier to understand. These are: the digital processing circuit, the

current controller and the current regulator. These blocks are chosen as they have three sets of requirements.

The digital circuit is a low voltage circuit (5V ) with some high frequency channels and a low current. This means it only

requires standard size PCB tracks and a ground plane, in addition the 5V and ground must be very stable.The current

controller has a mix of higher voltage components,±15V , and lower ones, +5V . The current is low and there are no high

frequency components. This reduces the number of contraints on the PCB design.

The current regulator has +15V supply and enough current to drive the pelitier, this can be up to 8A if the correct

components and voltages are chosen. The PCB must be designed using thicker tracks capable of carrying such high

currents.

With the addition of a temperature sensor, as discussed in section 2.3 this forms the complete circuit.
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Circuit Diagram D.1: The digital processing circuit. Inputs to the Nano are shown on the left, outputs on the right. The outputs from this circuit go to Circuit

Diagram D.2. Further discussion is available in subsection D.3.1.



Circuit Diagram D.2: The current controller circuit. The inputs come from Circuit Diagram D.1 and the outputs go to Circuit Diagram D.3. Further discussion is

available in subsection D.3.2.



Circuit Diagram D.3: The current regulator circuit. This circuit has regulates the flow of positive and negative current

through the Peltier junction based on the inputs from Circuit Diagram D.2. Further discussion is available in subsec-

tion D.3.3.
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D.3.1 The Digital Processing Circuit

The digital processing circuit is shown in Circuit Diagram D.1. Leftmost are three capacitors, since the Peltier element

and this circuit share a common ground, this stabilise each of the voltage lines. The capacitors are large to account for

the high currents involved. There is an input to allow the circuit to be connect to the PC via USB. SW2 and R2 allow

the user to enable analogue set point modulation and control it respectively. The override LED is hardwired to this input.

Outputs D6 and D7 are connected to the Stable and Running LED’s respectively, though a 220Ω resistor for protection.

D4 and D5 are used for communication with the 24-Bit ADC. D11 is used as a 2MHz clock for the 24-Bit ADC,

when 24 Bit mode is disabled this is turned off to reduce noise in the circuit. The 100Ω resistor after D11 reduces the

effect of small oscillations following the change of state of the clock. Pin D12 tells the current regulator circuit in which

direction the current should flow through the Peltier element. A4 and A5 are used for the I2C communication protocol,

the 10kΩ pull-up resistors ensure that the default state of the line is high, as per the protocol. To further reduce noise,

each digital component is fitted with a 2nF capacitor between the 5V input and the local ground. This is placed as close

to the input as possible. Finally, V+ on the 24 Bit ADC is fitted with a 4.7nF capacitor, this is designed to cut out any

high frequency noise as discussed in section 2.3.1.If it is necessary for the circuit to monitor its own temperature then

the connection between V+ on the 24 Bit ADC and AIN0 should be broken, then V+ can be used for monitoring the

element temperature and AIN0 for monitoring the circuit temperature. If the circuit actively controls its own temperature

then V outB on the 16 Bit DAC can be used for this.

If the controller is required the control many temperature elements, then multiple 24 Bit ADC’s can be added. The same

CLK, SCLK, V-, and Vref connections can be used, however, DOUT will need to be connected to a new pin on the

Arduino, these can be read simultaneously. If additional DAC’s are required, then these can be added, although they will

require additional addresses, please consult the data-sheet for how to achieve this.

D.3.2 Current Controller

The current controller circuit is shown in Circuit Diagram D.2. This circuit consists of two parts, OA3 and OA4 compare

the input signal against a 2.5V reference. If this signal is greater than 2.5V, OA4 goes to +15V and OA3 goes to 0V

and vica versa. The second part is the feedback for the current regulator, the input is doubled to increase stability by

the non-inverting Op-Amp OA5; OA6 compares this against the desired amount of current and the signal ramps down,
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decreasing the current through the circuit if it is to high and vica versa.

D.3.3 The Current Regulator

The current regulator circuit is shown in Circuit Diagram D.3. Its behaviour is covered in Circuit Diagram 2.3, with the

switch replaced by the control as shown. If more Peltier elements are required then an additional one of these circuits will

be required for each one.

D.4 The Thorlabs AD590

It has been known for many years that Diodes have a strong temperature dependence[14], Thermodiodes and Transistor

based Temperature Transducers exploit this effect in order to generate a stable temperature reading[12] by outputting an

exact amount of current per degree of absolute temperature[52]. The AD590 is such a sensor and will output exactly 1mA

per degree kelvin[19]. Because the device outputs a current, implementation is easy as shown in Circuit D.4

Comparison to the Thermistor

The 10k Thermistor gives a good indication of absolute temperature and of change in temperature, however, over time

the Resistance-Temperature relationship may drift[49], furthermore the Resistance of all of the connections thermistor will

affect the reading. Because the AD590 outputs a current, the nature of the connections is not relevant to the transducer and

does not affect the reading[19]. The AD590 is designed with very stable systems in mind, whereas the 10k is an accurate

quicker and cheaper solution.
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Circuit Diagram D.4: Suggested circuit for measuring the temperature with an AD590. Since the device outputs a current

a single resistor is all that is required. The power and ground should be local to the measuring device, not the AD590 to

avoid errors[19]. It may be required to connect a non inverting active low pass filter if the signal is noisy.
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Appendix E

Quick Start Guide

In this Appendix I will briefly explain the steps required to implement the temperature controller. The advice here is based

on a mixture of guesswork, instinct, practise and a small amount of science. I do not attempt to explain why the methods

work, or reference how I came to deduce them, especially since some of the fields, such as 24 Bit sensing, are generally

considered to be a dark art. Hopefully it will help, but please do not feel limited by the content. If you are looking to

implement this system and are after advice then please feel free to contact me on mailto:axj336@gmail.com. I am

happy to respond to any questions even long after graduation. Table E.1 shows a list of components.

E.1 Printing the circuit

First I suggest that anyone wanting to implement this circuit gets the test system working, as a proof of concept. Then

before printing the circuit you must asses your requirements. For a general system with one Peltier Junction, 10mK

stability and a thermistor then the 24 Bit ADC is not required and circuits, D.1, D.2, D.3 and 2.1b can be printed. Note

that Circuit Diagram D.3 will require thicker traces and a ground plane should be implemented on all PCB’s to reduce

noise. With this design, electrical noise on the analogue inputs is the limiting factor, so pay attention to this when designing

the PCB.

For additional Peltier Junctions, additional DAC’s and copies of Circuits D.3 and D.2 will be required. These will require

additional code. Lastly, for each sensor an analogue input will be required. You do not need to monitor the 2.5V voltage

if you are not using the 24 bit sensors, in addition the set point modulation can be moved onto one of the 10 Bit ADC’s on

68

mailto:axj336@gmail.com


Highly Stable Compact Digital Temperature Controller for use with Ultrastable Atomic Systems. Final Report

Component Suggested Component Quantity Required

Very Stable 0.75 Ohm Resistor Any as long as low temperature coefficient 1

P-Type MOSFET ALF08P16V 2

N-Type MOSFET IRLI540NPBF 3

Peltier Element 1

LED L-53GD (Green); 1

LM358 (Op Amp) LM358APE4 3

Approx 220 Ohm Resistor Any / MF50 220R 1

Arduino Nano Nano 3.0 Atmel Atmega 328 MCU board 1

Approx 100k Resistor Any / MF25 10K 2

Approx 100 Ohm Resistor Any 3

Very Stable 10KOhm Resistor PTF5610K000BYEB 1

1000uF Capacitor Any 1

10nF Capacitor Any 1

4.7nF Capacitor Any 1

1nF Capacitor Any 4

24 Bit ADC (ADS1252U) ADS1252U 1

16 Bit ADC (ADS1115) ADS1115 1

16 Bit DAC (AD5667R) AD5667R 1

Pi V2 Raspberry Pi 2 Model B 1

Table E.1: Components List
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the Nano. This leaves two sensors on the 16 Bit ADC for temperature control. Additional 16 Bit ADC’s and DAC’s can

be connected on the same I2C line as long as the correct address is chosen, the datasheets explain this fairly well.

E.2 Adjusting the code

The code is available in a Bit-bucket repository:

https://bitbucket.org/surfmanjones/arduinotempraturecontroller

and is also shown in Appendix You must choose whether 16 or 24 bit mode is to be used, paying attention to the noise

constraints discussed in subsection 3.1.2. Editing the code should be obvious, it is well commented and structured into

high level blocks. There is a slight subtly in reading several 24 Bit DAC’s. The can be read simultaneously provided

that the same SCLK is used. Read in the whole register and then mask the bits into the relevant variables. This must

be done using port level operations. A good guide is available here: http://www.arduino.cc/en/Reference/

PortManipulation.

E.3 Setting Up

It is recommended that each PCB is tested before use. Then test your system using test Peltier Junctions and sensors,

small blocks of aluminium will do, if it fails, it should do disastrously, this makes it easy to debug, but may damage a

sensitive system. The code must be uploaded to the Arduino using a computer. If a Pi is to be used, then this must be

set up, default Raspbian, will do, then install python2.7 and the Arduino environment, both are available in the standard

repositories1. Then load the scripts onto the Pi and program.

E.4 Suggested Tuning Procedure

First you must calculate a reasonable average time for your system, if you estimate the mass and the specific heat capacity

and the power output by your Peltier element, then the time to change the temperature by 1mK is a reasonable estimate.

To tune the PID, use guesswork, there are various guides advice available on the Internet, but guesswork is by far the

1If you open terminal and connect to a network, then the command sudo apt-get install python && sudo apt-get install arduino, should do this for

you. Installing software on Linux is normally done via apt-get, its much easier than on Windows.
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easiest. Start by setting the integral and differential constants to zero, and find a proportional constant that is as high as

possible without causing oscillations. Then reduce that by about 5% and slowly increase the integral constant until you

see oscillations. Differential simply amplifies noise, so I wouldn’t implement it.

E.5 Circuit Validation

It is important to test that the measured temperature is the actual temperature. To do this I used an accurate voltmeter to

ensure that the measured voltage and the actual voltage were the same on the inputs to the ADC’s. I then calculated the

systematic errors due to resistance in the connecting wire. Then I measured the temperature of a body with two thermistors

to guard against and manufacturing defects. If these checks are all satisfactory, then there are no errors in the system.
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Appendix F

Derivations

F.1 A Mathematical Model for a Controlled System

Consider the controller shown in Figure 2.1, if the controller has gain, Ac, and the system has gain, As, then it is possible

to deduce to following expressions,

r(t) = s(t)− o(t), (F.1)

u(t) = e(t) + c(t), (F.2)

which simply reduce the number of variables. Now, adding in the amplification factors,

c(t) = Acr(t), (F.3)

= Ac (s(t)− o(t)) , (F.4)

o(t) = Asu(t), (F.5)

= As (e(t) + c(t)) , (F.6)

therefore by re-arranging[52],

o(t) = As (e(t) +Ac (s(t)− o(t))) , (F.7)

o(t)(1 +AsAc) = AsAcs(t) +Ase(t), (F.8)

o(t) =
AsAc

1 +AsAc
s(t) +

As
1 +AsAc

, (F.9)
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we can produce a mathematical model of the system1. Now it is possible to determine the response of the output, o(t), to

some input error signal, e(t), by calculating ∂o
∂e

[52]

∂o

∂e
=

As
1 +AsAc

. (F.10)

Thus we can deduce that for any controller, it is essential to make the total controller gain as high as possible in order to

keep the response to any unwanted disturbances, ∂o∂e , as low as possible.

F.2 Response of a System to Temperature Changes

By approximating the geometry of the controlled system to a cubic aluminium block of dimensions (3 × 5 × 1)cm and

assuming that the aluminium thermalizes instantly, it is possible to do some representative calculations for a laser diode

mount. Using the first law of thermodynamics,

∆U = Qin +Won, (F.11)

and asserting that an internal energy change will result in a temperature change given by,

∆T =
∆U

mc
, (F.12)

it is possible to determine that,

∆T =
P (t)δt

mc
, (F.13)

where P is the power of the controlling system. Thus taking differentials,

∂T

∂t
=
P (t)

mc
. (F.14)

Now, Fourier Theory states that any periodic signal can be expressed as the sum of sine waves. So calculating T (t) for

the case P (t) = Aeiωt gives,

T (t) =
A

mc

∫ t′=t

0

eiωt
′
dt′. (F.15)

1This derivation is shown here for completeness, it is also shown in Electronic Circuits[52], which was used extensively while modelling the PID

controller.
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Solving and applying the initial condition T (0) = T1 gives,

T (t) =
−Ai
ωmc

eiωt + T1 (F.16)

= −i︸︷︷︸
φs

×

As︷ ︸︸ ︷
1

ωmc
×P (t) + T1. (F.17)

Thus the phase response, φs = −i = −90o and the amplitude response, As = 1
ωmc , of the system to a periodic input

signal P (t) can be deduced. If the system does not thermalize instantly but does so over some time then there will be an

additional phase and amplitude response.

F.3 Estimation of Thermal Fluctuations

A very rough estimation of the thermal fluctuations in an air conditioned laboratory can be obtained using the following

estimations:

1. Room size ∼ (2× 10× 10)m = 200m3

2. Air inlet vent size ∼ 1m× 1m

3. Air conditioning flow rate ∼ 20ms−1

4. Air inlet temprature is room temprature ±100k

5. Air pressure 100kPa, Room Air Temperature 273ok, Gas Constant 286JKg−1ok−1

Then by applying the ideal gas law,

ρ ≈ P

RT
, (F.18)

the density of air can be approximated to be 1.3Kgm−3. The mass of air flowing into the room is therefore 1.3× 1× 1×

20 = 26 and the mass of air in the room is 1.3× 2× 10× 10 = 260. Assuming that the mass of air remains unchanged,

the average energy change of the air can be determined,

δEav = minc(±10)δt. (F.19)

Dividing through by the total mass of air and the heat capacity gives the average temperature change in to room,

δTav =
min

mroom
(±10)δt = ±26× 10

260
. (F.20)
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Letting δt→ 0 gives,

dT

dt
= 1oks−1. (F.21)

F.4 Potential Divider

Assuming that the current drawn by the output is negligible, then the total current in the Circuit 2.1a can be calculated

from Ohms law,

Vi = ItRt, (F.22)

where Vi is the voltage in, It is the total current and Rt is the total resistance. Re-arranging and subtituing gives,

Vi
Rt

= It, (F.23)

Vi
R1 + Th1

= It. (F.24)

The re-applying Ohms law to find the voltage across Th1 for current It,

Vo = ItTh1 (F.25)

Vo =
Vi

R1 + Th1
Th1 = Vi

Th1
R1 + Th1

, (F.26)

where Vo is the voltage at the output with respect to the circuit ground.

F.5 High Frequency Cut with parallel resistors

It is well known that a resistor and a capacitor can be used to cut frequencies higher than f0 when configured as shown in

Circuit Diagram F.1a. The actual response is more complex[53], however, it is an exceptionally common approximation to

assume that any frequencies above f0 are nulled and those below are left intact, where[13],

f0 =
1

2πRC
, (F.27)

where R and C are the resistance, R1, and capacitance, C1, respectively as defined in Circuit Diagram F.1a. Then when

circuit F.1c is used,

1

R
=

1

R1
+

1

Th1
(F.28)
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(a) A standard low pass filter cir-

cuit. Frequencies higher than f0

are passed to ground via the ca-

pacitor. The input is also the out-

put for this circuit.

(b) This is the same low pass filter, since the

total resistance is still 5kΩ.

(c) This is the same low pass fil-

ter, provided the voltage is con-

stant, it doesn’t matter where the

resistor is connected.

Circuit Diagram F.1: Three identical low pass circuits. It doesn’t matter how the resistors are arranged provided the total

resistance is the same.

gives the new resistance[13] and f0 can be recalculated. If the resistance of Th1 varies with temperature then so will f0.

Calculating this for the values shown and a Thor Labs 10K Thermistor gives f25
oC

0 = 6.77kHz, f0
oC

0 = 13kHz and

f50
oC

0 = 4.4kHz. These value are chosen to be above the sample frequency of the ADC as discussed in subsection 3.1.2.

F.6 Laser Diode Temperature Dependence

Laser systems in general produce monochromatic, coherent and well collimated light[23], however, the laser cavity often

supports many modes[46] as shown in Figure F.1a. This effect is more dominant in laser diode systems than other laser

systems due to the small area in which the light is emitted from[26]. This effect shows itself as both amplitude and phase

fluctuations[46]2. In addition the collimation is often poor with diode laser systems due to diffraction in exiting the lasing

cavity. The linewidth and collimation of the diode laser can be reduced using an External Cavity Diode Laser (ECDL) and

2These fluctuations can actually be accurately modelled as a coherent wave with Gaussian noise[32]
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(a) An example emission spectra of a bare diode laser. The peaks show that many modes of laser operation are supported. Each of these

modes competes in the laser system to become the dominant mode.

(b) An example emission spectra of a External Cavity Diode Laser (ECDL). The optical feedback from the ECDL back into the cavity

causes one mode to dominate and suppresses all the others, as can be seen by contrasting with Figure F.1a.

Figure F.1: Data showing the modes supported in a Diode laser both with and without additional optics. This unpublished

data was collected as part of work during previous studies[27]. Copies are available on request.
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a lens[26]. An ECDL will decrease the number of modes emitted, as shown by contrasting Figure F.1a and Figure F.1b.

However, the dominant mode is a still function of a 3D parameter space including the angle of the ECDL grating[27],

the current flowing through the diode[44] and the temperature of the diode[44]. Furthermore, the angle of the grating is

normally controlled using a piezo, which is temperature dependant, as is the length of the External Cavity. This makes an

ECDL more temperature dependant than an ordinary laser diode.

In addition to the temperature dependence of the ECDL, there is also a dependence in the diode. There are many reasons

this, however, one of the easiest to explain is the thermal expansion of the lasing cavity. A laser cavity in general has

two mirrors at either end[23], these mirrors serve two purposes, a) to cause more passes of the laser beam through the gain

medium, increasing amplification and b) to act as a high finesse cavity selecting just one mode out of the several supported

modes.

Such a high finesse cavity works by setting up standing waves within the cavity. When the wave equation,

∂2u

∂t2
= v2∇2u (F.29)

with v = velocity which in this case is cl = 3×108ms−1, u ≡ u(x, y, z, t) is a function describing the wave shape and all

other symbols have their usual meanings, is solved for such a system, the result is that only standing waves of quantised

values are allowed in the cavity. All other oscillations will die away[27]. These quantised values of wavelength {λn} are

given by

λn =
2L

n
(F.30)

where n is a positive non zero integer and L is the length of the cavity[23]. Since L = L(T ) due to thermal expansion, it

follows that {λn} = {λn(T )}. Thus the principal mode is temperature dependant. Temperature normally changes slowly

and so this effect is normally seen in that after period of time, the laser frequency will drift to a new value, in some cases

it may jump to the next mode supported by for that current, temperature and angle set.

Page 78 of 150



Appendix G

Further Results

G.1 Power Supply Noise

In addition to the noise discussed in subsection 3.1.2, there was also noise on the power supply. This was reduced with

the addition of a 1mF capacitor on the 5V supply and a 1µF capacitor on the 2.5V as shown in Figure G.1 and G.2. The

same procedure was carried out for all other voltage supply lines to ensure best stability.

G.2 Transient Response

The design goal was to achieve a shift though the system of less than 1000 of the shift in the controller.

G.2.1 Time delay in the controller

The controller can be programmed to flip the state of an LED on every loop of the control algorithm. By doing this the

time delay in the controller can be determined measured as shown in Figure G.3. The exact length of the process depends

on the number of times the 16 Bit ADC is read as this takes 4ms per channel read. By enabling continuous conversion

this can be eliminated if only one channel is read.
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(a) Without 1mF capacitor
(b) With 1mF capacitor

Figure G.1: Noise on the stable 5V voltage lines. The blue line shows loops of the control program. The yellow line

shows the signal on the 5V line and the red line is a FFT of this. A significant reduction in noise is visible with the

addition of the capacitor.

(a) Without 1µF capacitor (b) With 1µF capacitor. Note the increase in magnification

Figure G.2: Noise on the stable 2.5V voltage lines. The blue line shows loops of the control program. The yellow line

shows the signal on the 5V line and the red line is a FFT of this. A significant reduction in noise is visible with the

addition of the capacitor.
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Figure G.3: The output clock from the Arduino. This clock changes state on every loop. Taking account of additional

process that don’t run on every loop by assigning a very liberal error gives a loop time of (2.5± 0.1)ms. In this setup the

16 Bit ADC was not used at all.

G.2.2 Phase Response of the System

As discussed in section 2.1.2 there will be an additional response to the calculated 90o phase shift in the system as it does

not thermalize instantly. By modulating the set point through (3.2 ± 0.2)oC peak to peak with a varying time period, it

was found that t = (38± 1)s resulted in a π phase shift with no amplitude reduction as shown in Figure G.4. The average

was disabled for this measurement. The theory in section 2.1 predicts that a decreasing amplitude response would result

if the system was driven at a higher frequency than t = (38 ± 1)s, this was found to be true as shown in Figure G.5,

suggesting that the proportional constant was sufficiently low and did not lead to unstable positive feedback.

G.2.3 Phase Conclusions

The time delay in the controller was found the be around ∼ ms whereas the time delay in the system was found to be

around ∼ 10s, this means that the system meets its transient goal, of a controller delay less than a 1000th of the system

delay.
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(a) The blue line shows the set point modulation around 25oC, 1V is programmed to equal 1oC change. The yellow line was input

signal to the 24 Bit ADC, because the average was disabled, noise was amplified though the controller leading the very noisy signal

shown.

(b) This is the temperature response as seen by the digital Arduino when the set point was modulated as in a).

Figure G.4: Graphs showing the response of the system to a oscillating set point.
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(a) Setpoint modulation at t = (38 ±

1)s. The system is π out of phase with

the controller and at full amplitude.

(b) Setpoint modulation at t = (11 ±

0.5)s. The system is 2π out of phase

with the controller with reduced ampli-

tude.

(c) Setpoint modulation at t = (7 ±

0.2)s. The system is 2π + π/4 out of

phase with the controller with signifi-

cantly reduced amplitude.

Figure G.5: Graphs showing the effect of driving the system above the cutoff frequency. The blue line shows the set point

modulation around 25oC, 1V is programmed to equal 1oC change. The yellow line was input signal to the 24 Bit ADC.
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Appendix H

Code

For this project I have developed and written a number of pieces of code, these are shown below.

H.1 Key Programs

In this section I will present the code for the key programs developed for this controller.

H.1.1 Arduino File.ino

This file contains the temperature controller program to run on the Arduino.

1 /*#=============================================

2 #˜˜˜˜˜ Arduino Temprature Controller ˜˜˜˜˜˜˜

3 #---------------------------------------------

4 # Interface Code

5 # V1.0

6 # Author - Aaron Jones

7 # Date: 25/03/2015

8 # Copyright Aaron Jones, 2015

9 #---------------------------------------------

10 # This program is free software: you can redistribute it and/or modify

11 # it under the terms of the GNU Lesser General Public License as published by

12 # the Free Software Foundation, either version 3 of the License, or
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13 # (at your option) any later version.

14 #

15 # This program is distributed in the hope that it will be useful,

16 # but WITHOUT ANY WARRANTY; without even the implied warranty of

17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

18 # GNU General Public License for more details.

19 #

20 # You should have received a copy of the GNU Lesser General Public License

21 # along with this program. If not, see <http://www.gnu.org/licenses/>.

22 #-------------------------------------------

23 #

24 # The following code is designed to be used

25 # with an Arduino Nano and the custom circuit

26 # designed and built by Aaron Jones, 4th Yr MSci

27 # Physics Student, University of Birmingham.

28 #

29 # There are two modules. The first module is called

30 # the user module and runs on a computer

31 # connected to the Arduino and allows the setting

32 # of variables and output of performace data.

33 # This is the second module called the control module

34 # and that runs on the Arduino actually controllingDominic

35 # the temprature.

36 #

37 # Concept

38 # The concept is that the Arduino controls

39 # the temprature using a 16 Bit ADC using an I2C

40 # link. Proccess this infomation in this script,

41 # and then outputs this to a DAC back over the I2C

42 # link. The voltage from the DAC is proccessed by a

43 # analouge circuit to control a peltier junction.

44 #

45 # A report was written on this program

46 # as part of a 4th Yr Project. This explains
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47 # the method in more detail

48 # and contains circuit diagrams.

49 #

50 # Dependancies

51 # - User_Interface.py

52 # - Control Module (This one)

53 # - Wire libary

54 #

55 # Acknowlagements

56 # The code used to access the timer2 function is from:

57 # http://forum.arduino.cc/index.php?topic=62964.0-

58 # The author is davekw7x

59 #

60 # The code used for the 24 Bit ADC is modified from Iain MacIvers

61 # work in 2014 for the University of Birmingham, Cold Atoms,

62 # GG-TOP group studies

63 #

64 # The PID has been modified from http://playground.arduino.cc/Code/PIDLibrary

65 # and is written by Brett Beauregard, contact: br3ttb@gmail.com

66 # Because it is under a stricter licence, it is stored sepertley

67 # The software can be used with an alternative algorithm under the LGPL

68 # or the PID under the fuller GPL

69

70 # Command Characters

71 # The following characters are used for sending commands

72 # between the two programs

73 # - m -> Message, the next line will be a message to the user

74 # - h -> Handshake, please acknowledge that the script is running

75 # - d -> Data

76 #

77 # Constants

78 # In this section there are a number of user tuneable constants

79 # These are globally accessible and called when required

80 # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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81 # */

82 /* ------ Common Constants ------- */

83 // After each reset, the following constants

84 // will be set by the Arduino. These can be

85 // overridden by a connected PC, but the change

86 // will not be permentant until set here

87

88 // Set Temprature

89 // --------------

90 // The default set temprature for the Arduino

91 // in degrees celius

92 // Typical Value = 25;

93 const double DEFAULT SET TEMPRATURE = 2 5 ;

94

95 // Desired Accuracy

96 // --------------

97 // The accuracy with which the temprature must be stable to.

98 // If inside the range

99 // (SETPOINT - ACCURACY) < Temp < (SETPOINT + ACCURACY)

100 // the system will be regarded as stable and the stable

101 // led will light. Upon exiting this range the user will

102 // be informed

103 // Typical Value = 0.01;

104 const double ACCURACY = 0 . 0 1 ;

105

106 // Proportional Constant

107 // --------------

108 // Typical Value = 4;

109 const double DEFAULT PROPORTIONAL CONSTANT = 2 ;

110

111 // Intergral Constant

112 // --------------

113 // Due to the high sample frequency this typically has a low value

114 // Typical Value = 0.001;
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115 const double DEFAULT INTERGRAL CONSTANT = 0 . 0 0 1 ;

116

117 // Differntial Constant

118 // --------------

119 // Due to the high sample frequency this typically has a low value

120 // Typical Value = 0.1;

121 const double DEFAULT DIFFERNTIAL CONSTANT = 0 . 0 ;

122

123 /* ------- Less Common Constants ----- */

124 // These are constants which are tuneable, but typically

125 // do not vary in every implemtation of the system

126 // They are still tuneable

127

128 // 16 or 24 Bit

129 // -----------------------

130 // There are two potential options for tihs circuit

131 // using a 24 bit ADC or a 12 bit ADC.

132 // Set to true if using the 24 bit system.

133 // Typical Value = false

134 const bool TWENTY FOUR BIT = false ;

135

136 // The value of Celsius in kelvin

137 // -----------------------------

138 // The PID actually works in kelvin and converts to

139 // celsius on reciept and transmission of data

140 const double CELSIUS = 2 7 3 . 1 5 ;

141

142 // Average Time

143 // --------------

144 // The time (in milliseconds) over which to peform a rolling average

145 // of the temprature data from the sensor.

146 // This is a method of rejecting electrical noise

147 // Note: 5 <= AVERAGE_TIME <= 1275, and it must be a multiple of 5

148 // Typical Value = 250;
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149 const int AVERAGE TIME = 500 ;

150

151 // Report Frequency

152 // --------------

153 // Please specify a time in milliseconds between

154 // the the Arduino sending data to the PC

155 // If REPORT_FREQUENCY_TIME = 0 The Arduino will output

156 // after every measurement

157 // Typical Value = 500;

158 const int REPORT FREQUENCY TIME = 500 ;

159

160 // Stable Count

161 // --------------

162 // The number of successive ’good’ measurements

163 // before we can consider the system stable. Should be

164 // at least twice the value of the (average time/5)

165 // 1 second is approx 200

166 // Typical Value = 100;

167 const int STABLE COUNT = 400 ;

168

169 // Flash Frequency

170 // --------------

171 // Pin 13 flashes after every X interations of

172 // the stabilisation loop. Ie if X = 1

173 // then every time a new tempratue value is

174 // read the LED will change state (e.g. on -> off)

175 // This helps to detect if the program has crashed

176 // Typical Value = 1; (with ossiloscope)

177 // Typical Value = 100 (without scope)

178 const int FLASH FREQUENCY = 200 ;

179 /*

180 # ================================================

181 */

182 // #### Header #####
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183 // ==== Dependancies =====

184 #include <Wire . h>

185 // ==== Class Declarations =====

186 // ---- USB Class ----

187 class i o

188 {

189 private :

190 int mode ; // mode = 0: no pc connected

191 // mode = 1: PC connected, user script not running

192 // mode = 2: PC connected, user script running, output debug messages only

193 // mode = 3: supress all output

194 // mode = 4: output data and debug in human readable format

195 // mode = 99: connection yet to be determined

196 void c l e a r i n ( ) ;

197

198 public :

199 void i o S e t u p ( ) ;

200 void sendCommand (char command ) ;

201 void p r i n t M e s s a g e ( S t r i n g message ) ;

202 void sendData (double d a t a ) ;

203 b o o l e a n openPar tMessage ( ) ;

204 //void printPartMessage(String message);

205 void c l o s e P a r t M e s s a g e ( ) ; // Disable this functionallity

206 char r e a d c h a r ( ) ;

207 double r e a d f l o a t ( ) ;

208 int r e a d i n t ( ) ;

209 char checkmsg ( ) ;

210 void outMode ( ) ;

211 void checkPC ( ) ;

212 void Connect ( ) ;

213 void u p d a t e U s e r (double tempC , double Vout Signed , double Vin ) ;

214 } ;

215

216 // ---- DAC Class ----
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217 class DAC

218 {

219 private :

220 int a d d r e s s ;

221 int o u t p u t ( u i n t 8 t command , double& v a l u e ) ;

222 public :

223 DAC(int a d d r e s s I N ) ;

224 int Dsetup ( ) ;

225 int o u t p u t A (double v a l u e ) ;

226 int o u t p u t B (double v a l u e ) ;

227 int o u t p u t b o t h (double v a l u e ) ;

228

229 } ;

230

231 // ---- 16 Bit ADC Class ----

232 class myADC //The global namespace has been poluted by wire.h and consequently ADC has been used

elsewhere

233 {

234 private :

235 int a d d r e s s ;

236 b o o l e a n s i n g l e s h o t ;

237 unsigned int c o n f i g A l l ;

238 unsigned int conf igA0 ;

239 unsigned int conf igA1 ;

240 unsigned int conf igA2 ;

241 unsigned int conf igA3 ;

242 public :

243 myADC(int addre s s IN , b o o l e a n s i n g l e ) ;

244 double readADC (int p o r t ) ;

245 } ;

246

247 class ADC24 // Class for 24 bit ADC

248 {

249 private :
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250 b y t e PSCLK ; // Bytes to hold the pins for the clock and data

251 b y t e PDATA;

252

253 void A w a i t P u l s e ( ) ; //Functions to control timings

254 void AwaitAdc ( ) ; // for the ADC

255

256 public :

257 ADC24( b y t e SCLKpin , b y t e d a t a P i n ) ;

258 void ResetAdc ( ) ;

259 float Update ( ) ;

260

261 } ;

262

263 // ==== Function Declarations =====

264 double vol t2Temp (double v o l t a g e , double f iveV , int a r r a y S i z e , double temps [ ] ) ;

265 void D11clock ( ) ;

266 void c o n s t a n t E r r o r ( S t r i n g message ) ;

267

268 void s e t u p ( )

269 {

270 S e r i a l . b e g i n ( 9 6 0 0 ) ; // Setup serial communiction

271 S e r i a l . p r i n t l n ("mArduino staring up..." ) ; //Inform user

272 S e r i a l . p r i n t l n ("Checking Constants" ) ;

273 {

274 if (AVERAGE TIME < 5)

275 { c o n s t a n t E r r o r ("The averaging time must be a multiple of 5 AND must be >5" ) ;}

276 float f a v = float (AVERAGE TIME) ;

277 if (AVERAGE TIME/ 5 != f a v / 5 . 0 )

278 { c o n s t a n t E r r o r ("The averaging time must be a multiple of 5 AND must be >5" ) ;}

279 }

280 if (TWENTY FOUR BIT) {D11clock ( ) ;} // Setup a hardware clock output on pin 11

281 S e r i a l . p r i n t l n ("m Entering main function" ) ; // Inform user

282 }

283
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284 // #### Function Defonitions ####

285 // ==== Main Program =====

286 void l oop ( )

287 {

288 // #### Setup ####

289 // ==== Call Functions ====

290 Wire . b e g i n ( ) ; //Join I2C bus as master

291

292 // ==== Set up classes ====

293 // ---- IO ----

294 i o s e r ; // Open class for IO communication via serial

295 s e r . i o S e t u p ( ) ; // move initialise into separate function (lets you re-initialise

296 // without recreating variables

297 s e r . p r i n t M e s s a g e ("Setting up variables..." ) ;

298

299 // ---- DAC ----

300 DAC dac (0 x0F ) ; //Set up a class for the DAC

301 dac . Dsetup ( ) ;

302

303 // ---- ADC’s ----

304 myADC adc (0 x48 ,false ) ; // Set up class for 16 Bit ADC, no continous conversion not required

305 ADC24 myLaser ( 4 , 3 ) ; // Delcare the ADC24 out here so it is visible

306

307 if (TWENTY FOUR BIT) {myLaser . ResetAdc ( ) ;} // Reser ADC if it will be used this time

308

309 // ---- PID ----

310 //Define the PID variables

311 double S e t p o i n t , I n p u t , Outpu t ;

312

313 double a c c u r a c y = ACCURACY; // Load the default accuracy value

314 b o o l e a n s t a b l e = false ;

315

316 //Specify the links and initial tuning parameters (split over two lines)

317 PID myPID(& I n p u t , &Output , &S e t p o i n t ,
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318 DEFAULT PROPORTIONAL CONSTANT,

319 DEFAULT INTERGRAL CONSTANT ,

320 DEFAULT DIFFERNTIAL CONSTANT ,

321 DIRECT ) ;

322

323 //initialize the variables we’re linked to

324 S e t p o i n t = CELSIUS + DEFAULT SET TEMPRATURE ; // Set to 20 deg C

325 double p c S e t p o i n t = S e t p o i n t ;

326 I n p u t = S e t p o i n t ; // Set Input = Setpoint so nothing will happen just yet

327

328 // Override some default values

329 myPID . S e t O u t p u t L i m i t s (−3.5 , 3 . 5 ) ; // Set limits to 0 -> 3.5V, can send this straight to DAC

330

331 //turn the PID on

332 myPID . SetMode (AUTOMATIC) ;

333

334 // ==== Set Pins ===

335 const int HCpin = 1 2 ; // The pin that controlls hot / cold

336 const int r u n n i n g P i n = 7 ; //Pin to flash when running

337 const int s t a b l e P i n = 6 ;

338 int runn ingLoop = 0 ; //Loop counter to bring flash freq down to human readable

339 const int l o c k S e t p o i n t = 2 ;

340

341 pinMode ( HCpin , OUTPUT) ; // Set pin to be an output

342 pinMode ( r u n n i n g P i n , OUTPUT) ;

343 pinMode ( s t a b l e P i n , OUTPUT) ;

344 pinMode ( l o c k S e t p o i n t , INPUT ) ;

345 d i g i t a l W r i t e ( HCpin , HIGH) ; // Set pin to high, it needs a value, I pick high

346 d i g i t a l W r i t e ( r u n n i n g P i n , HIGH) ; //Output the state to the pin, after this we will use port level

IO for speed

347 d i g i t a l W r i t e ( s t a b l e P i n , s t a b l e ) ; //Set the LED to the current stablility value

348

349 myPID . c l e a r H i s t o r y ( ) ; // Clear the PID history to ensure no weirdness

350
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351 s e r . p r i n t M e s s a g e ("Begin temprature control loop..." ) ;

352

353 while (true ) // Loop forever

354 {

355 // Check that the PC is still there

356 s e r . checkPC ( ) ;

357 // Check if the PC wants to change a value

358 char pcVal = s e r . checkmsg ( ) ;

359 s e r . outMode ( ) ; //If the PC is connected okay, illumenate the pin 13 LED, else off

360 switch ( pcVal )

361 {

362 case ’v’ :

363 { // Case v, the PC whishes to know the values of Kp, Ki, Kd and the Setpoint

364 if ( s e r . openPa r tMessage ( ) ) {

365 S e r i a l . p r i n t ("V=" ) ;

366 S e r i a l . p r i n t ( myPID . GetKp ( ) , 3 ) ;

367 S e r i a l . p r i n t (’,’ ) ; // csv delimited

368 S e r i a l . p r i n t ( myPID . GetKi ( ) , 3 ) ; //repete

369 S e r i a l . p r i n t (’,’ ) ; // csv delimited

370 S e r i a l . p r i n t ( myPID . GetKd ( ) , 3 ) ;

371 S e r i a l . p r i n t (’,’ ) ; // csv delimited

372 S e r i a l . p r i n t ( S e t p o i n t−CELSIUS , 3 ) ;

373 S e r i a l . p r i n t (’,’ ) ;

374 S e r i a l . p r i n t ( a c c u r a c y ) ;

375 s e r . c l o s e P a r t M e s s a g e ( ) ;

376 }

377 }

378 break ;

379

380 case ’V’ : //PC wishes to set new values of Kp, Ki, and Kd

381 {

382 float Kp = s e r . r e a d f l o a t ( ) ; //Read the new values

383 float Ki = s e r . r e a d f l o a t ( ) ;

384 float Kd = s e r . r e a d f l o a t ( ) ;
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385 float S e t I n = s e r . r e a d f l o a t ( ) ;

386 float a c c u r a c y I n = s e r . r e a d f l o a t ( ) ;

387 char e n d l i n e = s e r . r e a d c h a r ( ) ; //Check character

388 if ( e n d l i n e == ’V’ ) // If check isnt okay, ignore

389 {

390 p c S e t p o i n t = S e t I n + CELSIUS ; //otherwise set the new values, SetPiont is passed by

pointer, so just set the new value

391 myPID . S e t T u n i n g s ( Kp , Ki , Kd ) ; //Use function to set new tunings

392 a c c u r a c y = a c c u r a c y I n ;

393 }

394 }

395 break ;

396 }

397

398 //Serial.println("m PC Checks Complete");

399

400 // Check Set Point

401 if ( ( PIND & 0 b00000100 ) == 0 b00000100 ) {

402 S e t p o i n t = p c S e t p o i n t + ( 5 . 0 / 1 0 2 4 . 0 ) ∗ ana logRead ( 2 )/*adc.readADC(1)*/ − 2 . 5 ;

403 } else {

404 S e t p o i n t = p c S e t p o i n t ;

405 }

406

407 // Read ADC’s

408 double v o l t a g e ;

409 double f iveV = adc . readADC ( 2 ) ;

410 if (TWENTY FOUR BIT)

411 {

412 double Vref = adc . readADC ( 3 ) ;

413 double adcOut = myLaser . Update ( ) ;

414 double Vmin = Vref ;

415 v o l t a g e = Vmin + Vref∗ adcOut ;

416 /*Serial.print("m");

417 Serial.print(fiveV);
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418 Serial.print(";");

419 Serial.print(Vref);

420 Serial.print(":");

421 Serial.print(voltage);

422 Serial.print(";");

423 Serial.println(Input);*/

424 }

425 else {

426 v o l t a g e = adc . readADC ( 0 ) ;

427 }

428

429 //Serial.println("m Voltage Read");

430

431 // Convert to temprature and average

432 const int a v e r a g e L e n g h t = AVERAGE TIME / 5 ; //Number of tempratures to average over

433 static double a l lTemps [ a v e r a g e L e n g h t ] ; //array to hold temprature value to be averged over

434

435 I n p u t = vol t2Temp ( v o l t a g e , f iveV , ave rageLengh t , a l lTemps ) ; // Pass the 5V value to this function,

if using constant current just pass a zero, its not required

436

437 // Compute the new PID parameters

438 myPID . Compute ( ) ;

439

440 double dac A = Outpu t ;

441 if ( Outpu t > 0) { d i g i t a l W r i t e ( HCpin , HIGH) ; dac A = Outpu t ;}

442 else { d i g i t a l W r i t e ( HCpin , LOW) ; dac A = 0.0−Outpu t ;}

443

444 // output to DACS

445 dac . o u t p u t A ( dac A ) ;

446

447 //Flash LED to show that the program is looping the loop counter is to allow some gearing

448 runningLoop ++;

449 if ( runn ingLoop == FLASH FREQUENCY)

450 {

Page 97 of 150



Highly Stable Compact Digital Temperature Controller for use with Ultrastable Atomic Systems. Final Report

451 PORTD ˆ= (1 << r u n n i n g P i n ) ;

452 // This is using port level IO

453 // To toggle a pin otherwise uses two lines of code

454 // and looks a bit ugly.

455 // The command is ˆ is an exclusive OR

456 // (1 << X) means bit shift

457 // 0000 0001 left by X places. The effect is a toggle

458 // Search toggle a bit c++

459 // PORTD is the register that outputs to the pins

460 // This is 80x faster than digitalWrite

461 runningLoop = 0 ;

462 }

463

464 // Print data - Only print every second

465 // The rpi is pretty slow and even then serial isnt so quick

466 static unsigned long int t i m e l a s t = 0 ;

467 unsigned long int t imenow = m i l l i s ( ) ;

468

469

470 /* Stability Monitor, this indicated to the user whether the system has exceeded

471 its allowed temprature range. I.e. If accuracy 1mk , setpoint is 21 and

472 input = 21.002 the the system is unstable, otherwise its stable

473 */

474 if ( s t a b l e ) { //If the system is supposdly stable then check this

475 if ( ( I n p u t > S e t p o i n t + a c c u r a c y ) | |

476 ( I n p u t < S e t p o i n t − a c c u r a c y ) ) { // If its not stable then:

477 s t a b l e = false ; // No longer stable :(

478 d i g i t a l W r i t e ( s t a b l e P i n , s t a b l e ) ; // output to LED

479 s e r . p r i n t M e s s a g e ("Accuracy exceeded!" ) ; // Inform user

480 s e r . s endData ( I n p u t − CELSIUS ) ; // Output data

481 t i m e l a s t = timenow ; // Reset timelast, we have just updated the user

482 } // No need for an else statement, if we think its stable and it is stable then we can

483 // just move on

484
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485 } else { // If the system is supposdly unstable, the first we check

486 static int c o u n t e r = 0 ;

487 if ( ( I n p u t > S e t p o i n t + a c c u r a c y ) | |

488 ( I n p u t < S e t p o i n t − a c c u r a c y ) ) { // If its still unstable then reset the stable

counter:

489 c o u n t e r = 0 ;

490 }

491 else { c o u n t e r ++; } //We dont want a handful of good readings to trick the user into

thiking this is stable

492 // so keep track of the number of stable readings

493

494 if ( c o u n t e r >= STABLE COUNT) { //If we have had lots of stable readings then the system is

stable and we can:

495 //Toggle LED

496 s e r . p r i n t M e s s a g e ("Stability Regained!" ) ; // Inform user

497 t i m e l a s t = 0 ; // Send all the data

498 s t a b l e = true ;

499 d i g i t a l W r i t e ( s t a b l e P i n , s t a b l e ) ; // output to LED

500 }

501 }

502

503 if ( timenow > t i m e l a s t + REPORT FREQUENCY TIME)

504 {

505 s e r . s endDa ta ( I n p u t − CELSIUS ) ;

506 s e r . u p d a t e U s e r ( ( I n p u t−CELSIUS ) , Output , v o l t a g e ) ;

507

508 t i m e l a s t = timenow ;

509 }

510 }

511 // End of loop

512 }

513

514 // ==== Voltage to Temprature =====

515 double vol t2Temp (double v o l t a g e , double f iveV , int a r r a y S i z e , double temps [ ] )
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516 {

517

518 // First Calculate a resitance from a voltage

519

520 // === Using a Simple Potentiometer ====

521

522 const double Rt = 10 e3 ; // Top resistor resistance

523 double r e s i s t a n c e = Rt / ( ( f iveV / v o l t a g e ) − 1 . 0 ) ; // This is just the potential divider formula

re-arranged

524

525 // === Or Using a Constant Current Source ====

526 //const double current = 66.74e-6; // Constant Current, this is a little dodgy, my current seemed

to vary a little near the limits of operation

527 //double resistance = voltage/current; // V=IR

528

529 // Next calculate a temprature (in Kelvin!) from a voltage

530 const double R25 = 10000 ; // Resistance at 25 Deg C (298.15 Deg K)

531 const double cons tTerm = 3.3540170 e−3;

532 double l i n e a r T e r m = ( 2 . 5 6 1 7 2 4 4 e−4)∗ l o g ( pow ( r e s i s t a n c e / R25 , 1 ) ) ;

533 double q u a d r a t i c T e r m = ( 2 . 1 4 0 0 9 4 3 e−6)∗ l o g ( pow ( ( r e s i s t a n c e / R25 ) , 2 ) ) ;

534 double cubicTerm = (−7.2405219 e−8)∗ l o g ( pow ( ( r e s i s t a n c e / R25 ) , 3 ) ) ;

535

536 double tNow = 1 / ( cons tTerm + l i n e a r T e r m + q u a d r a t i c T e r m +cubicTerm ) ;

537

538 //Now do a N-Point moving average to eliminate some noise

539 static int a r r a y I n d e x = 0 ; //Point to the element in the array to be updated

540 static bool f i r s t C a l l = true ; //Just for array initislisation

541 //If this is the first time then let all the variables have this temprature

542 //and initilise the array

543 if ( f i r s t C a l l )

544 {

545 int i = 0 ;

546 while ( i < a r r a y S i z e )

547 {
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548 temps [ i ] = tNow ;

549 i ++;

550 }

551 f i r s t C a l l = false ;

552 }

553 else

554 {

555 if ( a r r a y I n d e x == a r r a y S i z e ) a r r a y I n d e x = 0 ;

556

557 temps [ a r r a y I n d e x ]= tNow ;

558 a r r a y I n d e x ++;

559 }

560 double tempSum = 0 ;

561 for (int i = 0 ; i<a r r a y S i z e ; i ++) { tempSum = tempSum + temps [ i ] ; }

562

563 return ( 1 . 0 / a r r a y S i z e ) ∗tempSum ;

564 }

565

566 // This function is modified from davekw7x, see the acknowlegemets section for details

567 // Use of timer2 to generate a signal for a particular frequency on pin 11

568 void D11clock ( )

569 {

570 // Give the pin connected to the 0C2A comparitor register a name

571 const int f r e q O u t p u t P i n = 1 1 ; // OC2A output pin for ATmega328 boards

572 //const int freqOutputPin = 10; // OC2A output for Mega boards

573

574 // Constants are computed at compile time

575

576 // If you change the prescale value, it affects CS22, CS21, and CS20

577 // For a given prescale value, the eight-bit number that you

578 // load into OCR2A determines the frequency according to the

579 // following formulas:

580 //

581 // With no prescaling, an ocr2val of 3 causes the output pin to
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582 // toggle the value every four CPU clock cycles. That is, the

583 // period is equal to eight slock cycles.

584 //

585 // With F_CPU = 16 MHz, the result is 2 MHz.

586 //

587 // Note that the prescale value is just for printing; changing it here

588 // does not change the clock division ratio for the timer! To change

589 // the timer prescale division, use different bits for CS22:0 below

590 const int p r e s c a l e = 1 ;

591 const int o c r 2 a v a l = 3 ;

592 // The following are scaled for convenient printing

593 //

594

595 // Period in microseconds

596 const float p e r i o d = 2 . 0 ∗ p r e s c a l e ∗ ( o c r 2 a v a l +1) / ( F CPU / 1 . 0 e6 ) ;

597

598 // Frequency in Hz

599 const float f r e q = 1 . 0 e6 / p e r i o d ;

600

601 pinMode ( f r e q O u t p u t P i n , OUTPUT) ;

602

603 // Set Timer 2 CTC mode with no prescaling. OC2A toggles on compare match

604 //

605 // WGM22:0 = 010: CTC Mode, toggle OC

606 // WGM2 bits 1 and 0 are in TCCR2A,

607 // WGM2 bit 2 is in TCCR2B

608 // COM2A0 sets OC2A (arduino pin 11 on Uno or Duemilanove) to toggle on compare match

609 //

610 TCCR2A = ( ( 1 << WGM21) | (1 << COM2A0) ) ;

611

612 // Set Timer 2 No prescaling (i.e. prescale division = 1)

613 //

614 // CS22:0 = 001: Use CPU clock with no prescaling

615 // CS2 bits 2:0 are all in TCCR2B
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616 TCCR2B = (1 << CS20 ) ;

617

618 // Make sure Compare-match register A interrupt for timer2 is disabled

619 TIMSK2 = 0 ;

620 // This value determines the output frequency

621 OCR2A = o c r 2 a v a l ;

622

623 S e r i a l . p r i n t l n ("m Outputting on pin D11 with" ) ;

624 S e r i a l . p r i n t ("mPeriod = " ) ;

625 S e r i a l . p r i n t ( p e r i o d ) ;

626 S e r i a l . p r i n t l n (" microseconds" ) ;

627 S e r i a l . p r i n t ("mFrequency = " ) ;

628 S e r i a l . p r i n t ( f r e q ) ;

629 S e r i a l . p r i n t l n (" Hz" ) ;

630 }

631

632

633 void c o n s t a n t E r r o r ( S t r i n g message )

634 {

635 while (true )

636 {

637 S e r i a l . p r i n t l n (’m’ + message ) ;

638 S e r i a l . p r i n t l n (

639 "m The Arduino will not run untill recompiled with the correct constants" ) ;

640 d e l a y ( 5 0 0 0 ) ;

641 }

642 }

643

644

645 // ##### Define Classes ######

646 // ==== Define IO Class =====

647 void i o : : i o S e t u p ( )

648 {

649 pinMode ( 1 3 , OUTPUT) ;
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650 //Serial.begin(9600); This is called in setup

651 c l e a r i n ( ) ; // clear anything waiting on the buffer

652 Connect ( ) ;

653 }

654 void i o : : Connect ( )

655 {

656 sendCommand (’h’ ) ; // Send hello/handshake command

657 d e l a y ( 5 0 ) ;

658 // dont use the readchar function it might not return

659 char rv = S e r i a l . r e a d ( ) ;

660 if ( rv == ’h’ ) {mode =2;}

661 else { mode = 1 ;}

662 }

663 // --- Write functions ---

664 void i o : : sendCommand (char command ) { S e r i a l . f l u s h ( ) ; S e r i a l . p r i n t l n ( command ) ;}

665 //print command and new line

666 void i o : : p r i n t M e s s a g e ( S t r i n g message ) {if ( mode==2) { S e r i a l . f l u s h ( ) ; S e r i a l . p r i n t (’m’ ) ;

S e r i a l . p r i n t l n ( message ) ; }}

667 // print message character followed by the message and a new line

668 void i o : : s endDa ta (double d a t a ) {if ( mode==2) { S e r i a l . f l u s h ( ) ; S e r i a l . p r i n t (’d’ ) ;

S e r i a l . p r i n t ( da t a , 8 ) ; S e r i a l . p r i n t l n ( ) ; }}

669 //Sending floats at accuracies < 1e-8 causes problems so we will round off here to avoid any

problems

670 void i o : : u p d a t e U s e r (double tempC , double Vout Signed , double Vin ) {

671 if ( mode==2) {

672 S e r i a l . f l u s h ( ) ; //Wait for any output to finish

673 S e r i a l . p r i n t (’m’ ) ; //Signal message for screen

674 S e r i a l . p r i n t ("T=" ) ; //Write first few characters

675 S e r i a l . p r i n t ( tempC , 3 ) ; //Output temprature to 3dp

676 S e r i a l . p r i n t ("C DA: " ) ;

677 S e r i a l . p r i n t ( Vout S igned , 3 ) ; //Output voltage out

678 S e r i a l . p r i n t (" Ia:" ) ;

679 double I = ( Vou t S igned / 2 . 1 1 ) / 0 . 9 ;

680 // The current is the (voltage/amplification_of_signal)/Resitance(0.7 Ohms + 0.2 track on PCB)
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681 S e r i a l . p r i n t ( I , 3 ) ; //Output current to 3dp

682 S e r i a l . p r i n t l n ( ) ;

683 }

684 }

685 b o o l e a n i o : : openPa r tMessage ( ) {if ( mode==2) { S e r i a l . p r i n t (’m’ ) ; return true ;} else {return false ;}}

686 // start new line with message character

687 //void io::printPartMessage(String message) {Serial.print(message);}

688 //print message

689 void i o : : c l o s e P a r t M e s s a g e ( ) { S e r i a l . p r i n t (’\n’ ) ;}

690 //print new line

691

692 // --- Read functions ---

693 double i o : : r e a d f l o a t ( ) {float f ; if ( ! S e r i a l . a v a i l a b l e ( ) ) { d e l a y ( 1 0 ) ;} S e r i a l . r e a d B y t e s ( (char∗ )&f ,

sizeof ( f ) ) ; return f ;}

694 // declare float, wait until data becomes available then read it from USB

695 int i o : : r e a d i n t ( ) { if ( ! S e r i a l . a v a i l a b l e ( ) ) { d e l a y ( 1 0 ) ;} return S e r i a l . r e a d ( ) ;}

696 // wait for data to become available the return and cast to integer

697 char i o : : r e a d c h a r ( ) { if ( ! S e r i a l . a v a i l a b l e ( ) ) { d e l a y ( 1 0 ) ;} return S e r i a l . r e a d ( ) ;}

698 // wait for data to become available the return and cast to integer

699 void i o : : c l e a r i n ( ) { while ( S e r i a l . a v a i l a b l e ( ) ) { S e r i a l . r e a d ( ) ;}}

700 void i o : : checkPC ( )

701 {

702 static int t i m e L a s t = 0 ;

703 static int timeNow = 0 ;

704 timeNow = m i l l i s ( ) ;

705 if ( ( timeNow − t i m e L a s t ) >5000) //Run every 5 seconds

706 {

707 Connect ( ) ;

708 t i m e L a s t = timeNow ;

709 }

710 }

711 char i o : : checkmsg ( )

712 {

713 if ( S e r i a l . a v a i l a b l e ( ) )
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714 {

715 char v a l = r e a d c h a r ( ) ;

716 if ( v a l == ’h’ ) {mode = 2 ; return ’n’ ;}

717 else return v a l ;

718 }

719 else return ’n’ ;

720 }

721

722 void i o : : outMode ( )

723 {

724 if ( mode == 2){ d i g i t a l W r i t e ( 1 3 ,HIGH) ;}

725 else { d i g i t a l W r i t e ( 1 3 ,LOW) ;}

726 }

727

728 // ==== Define DAC Class =====

729 DAC : : DAC(int a d d r e s s I N ) { a d d r e s s = a d d r e s s I N ;}

730

731 // Setup function

732 int DAC : : Dsetup ( )

733 {

734 int t r a n m i s s i o n s t a t u s = 0 ;

735

736 //Reset the DAC registers

737 Wire . b e g i n T r a n s m i s s i o n ( ( u i n t 8 t ) a d d r e s s ) ;

738 Wire . w r i t e ( ( u i n t 8 t ) 0x28 ) ; //write reset commmand

739 Wire . w r i t e ( ( u i n t 8 t ) 0x00 ) ;

740 Wire . w r i t e ( ( u i n t 8 t ) 0x01 ) ;

741 t r a n m i s s i o n s t a t u s = Wire . e n d T r a n s m i s s i o n ( ) ;

742 if ( t r a n m i s s i o n s t a t u s != 0) {return t r a n m i s s i o n s t a t u s ;}

743

744 //Disable LDAC -- The LDAC pin is grounded so it shouldnt matter anyway

745 Wire . b e g i n T r a n s m i s s i o n ( ( u i n t 8 t ) a d d r e s s ) ;

746 Wire . w r i t e ( ( u i n t 8 t ) 0x30 ) ;

747 Wire . w r i t e ( ( u i n t 8 t ) 0x00 ) ;
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748 Wire . w r i t e ( ( u i n t 8 t ) 0x03 ) ;

749 t r a n m i s s i o n s t a t u s = Wire . e n d T r a n s m i s s i o n ( ) ;

750 if ( t r a n m i s s i o n s t a t u s != 0) {return t r a n m i s s i o n s t a t u s ;}

751

752 //Enable internal referance - Disabled Awaiting Spares

753 /*Wire.beginTransmission((uint8_t)address);

754 Wire.write((uint8_t) 0x38);

755 Wire.write((uint8_t) 0x00);

756 Wire.write((uint8_t) 0x01);

757 tranmission_status = Wire.endTransmission();*/

758

759 return t r a n m i s s i o n s t a t u s ;

760 }

761

762 int DAC : : o u t p u t ( u i n t 8 t command , double& v a l u e ) // value should be between 0 and 5

763 {

764 const unsigned int DAC bits = 0 b1111111111111111 ;

765 unsigned int b i n a r y o u t = ( v a l u e / 5 . 0 ) ∗DAC bits ; //Convert to binary, since using an internal

referance do this conversion here

766

767 int t r a n m i s s i o n s t a t u s ;

768 Wire . b e g i n T r a n s m i s s i o n ( ( u i n t 8 t ) a d d r e s s ) ;

769 Wire . w r i t e ( command ) ; //write to config register

770 Wire . w r i t e ( ( u i n t 8 t ) ( b i n a r y o u t >>8) ) ; //write first 8 bits (MSB)

771 Wire . w r i t e ( ( u i n t 8 t ) ( b i n a r y o u t & 0xFF ) ) ; //write to second 8 bits (LSB)

772 t r a n m i s s i o n s t a t u s = Wire . e n d T r a n s m i s s i o n ( ) ;

773 return t r a n m i s s i o n s t a t u s ;

774 }

775

776 int DAC : : o u t p u t A (double v a l u e ) {return o u t p u t ( ( u i n t 8 t ) 0 b00000000 , v a l u e ) ;}

777 int DAC : : o u t p u t B (double v a l u e ) {return o u t p u t ( ( u i n t 8 t ) 0 b00000001 , v a l u e ) ;}

778 int DAC : : o u t p u t b o t h (double v a l u e ) {return o u t p u t ( ( u i n t 8 t ) 0 b00000111 , v a l u e ) ;}

779

780 // ==== Define myADC Class =====
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781 myADC : : myADC(int addre s s IN , b o o l e a n s i n g l e )

782 {

783

784 a d d r e s s = a d d r e s s I N ;

785 s i n g l e s h o t = s i n g l e ;

786 if ( s i n g l e )

787 {

788 // Setup single shot conversion

789 c o n f i g A l l = 0 x0003 | // Disable the comparator (default val)

790 0 x0000 | // Non-latching comparator (default val)

791 0 x0000 | // Alert/Rdy active low (default val)

792 0 x0000 | // Traditional comparator (default val)

793 //0x0080 | // 128 samples per second (default) (8ms Conversion time)

794 0x00E0 | // 860 Samples per second (1ms conversion time)

795 0 x0100 | // Single-shot mode (default)

796 0 x0000 | // Set PGA/voltage range to 2/3 gain (full range of input)

797 0 x8000 ; //Signal ADC to start conversion

798

799 }

800 else

801 {

802 //Setup contonous conversion

803 c o n f i g A l l = 0 x0003 | // Disable the comparator (default val)

804 0 x0000 | // Non-latching comparator (default val)

805 0 x0000 | // Alert/Rdy active low (default val)

806 0 x0000 | // Traditional comparator (default val)

807 // 0x0080 | // 1600 samples per second (default) (8ms conversion time)

808 0x00E0 | // 860 Samples per second (1 ms conversion time)

809 0 x0000 | // Continous Conversion

810 0 x0000 | // Set PGA/voltage range to 2/3 gain (full range of input)

811 0 x8000 ; //Signal ADC to start conversion

812 }

813 conf igA0 = c o n f i g A l l | 0 x4000 ; //Add A0 address

814 conf igA1 = c o n f i g A l l | 0 x5000 ; //Add A1 address
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815 conf igA2 = c o n f i g A l l | 0 x6000 ; //Add A2 address

816 conf igA3 = c o n f i g A l l | 0 x7000 ; //Add A3 address

817 }

818

819

820 double myADC : : readADC (int p o r t ) // value should be between 0 and 1

821 {

822 unsigned int c o n f i g o u t ; // variable to hold configuration to be output

823

824 static int l a s t P o r t = 4 ; // variable to hold the lastPort, set to 4 so the next line will

evalulate false on the first loop

825

826 // If this the config register has not been changed, dont bother updating it

827 if ( l a s t P o r t != p o r t )

828 {

829 switch ( p o r t )

830 {

831 case 0 :

832 c o n f i g o u t = conf igA0 ;

833 break ;

834 case 1 :

835 c o n f i g o u t = conf igA1 ;

836 break ;

837 case 2 :

838 c o n f i g o u t = conf igA2 ;

839 break ;

840 case 3 :

841 c o n f i g o u t = conf igA3 ;

842 break ;

843 }

844

845 Wire . b e g i n T r a n s m i s s i o n ( a d d r e s s ) ;

846 Wire . w r i t e ( ( u i n t 8 t ) 0x01 ) ; //write to config register

847 Wire . w r i t e ( ( u i n t 8 t ) ( c o n f i g o u t >>8) ) ; //write first 8 bits (MSB)
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848 Wire . w r i t e ( ( u i n t 8 t ) ( c o n f i g o u t & 0xFF ) ) ; //write to second 8 bits (LSB)

849 Wire . e n d T r a n s m i s s i o n ( ) ;

850 }

851

852

853 // Request reading of data

854 if ( ( s i n g l e s h o t ) | | ( l a s t P o r t != p o r t ) ) { d e l a y M i c r o s e c o n d s ( 3 0 0 0 ) ;} // Wait 1.2ms for conversion to

complete (if in continous this step is not required)

855

856 Wire . b e g i n T r a n s m i s s i o n ( a d d r e s s ) ; //Open transmission to ADC

857 Wire . w r i t e (0 x00 ) ; //Select register to read from

858 Wire . e n d T r a n s m i s s i o n ( ) ;

859

860 // request data

861 Wire . r e q u e s t F r o m ( (int ) a d d r e s s , 2 ) ; // Request 2 bytes

862 double r e s p o n s e = ( ( Wire . r e a d ( ) << 8) | Wire . r e a d ( ) ) ;

863

864 // Convert to Voltage

865 const float PGA = 6 . 1 4 4 ; // Set PGA range for volatage conversion - //Since using internal ref

deal with this here

866 const int ADC bits = 0 b0111111111111111 ; // Set number of bits used

867 return PGA∗ ( ( 1 . 0∗ r e s p o n s e ) / ( 1 . 0 ∗ ADC bits ) ) ;

868

869 //Set last Port for next loop

870 l a s t P o r t = p o r t ;

871 }

872

873 // ==== Define ADC24 Class =====

874 ADC24 : : ADC24( b y t e SCLKpin , b y t e d a t a P i n )

875 {

876 // Bytes to hold the pins for the clock and data

877 PSCLK = SCLKpin ;

878 PDATA = d a t a P i n ;

879
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880 // Setup pins for output

881 pinMode (PSCLK , OUTPUT) ;

882 pinMode (PDATA, INPUT ) ;

883 }

884

885 // With SCLCK left low, the ADC will only pulse when data is ready

886 // in this case it will low, then resume high

887 void ADC24 : : A w a i t P u l s e ( ) {

888 while ( ! ( PIND&(1<<PDATA) ) ) ;

889 while ( PIND&(1<<PDATA) ) ;

890 }

891

892 // Wait the ADC to complete at least one cycle

893 void ADC24 : : AwaitAdc ( ) {

894 A w a i t P u l s e ( ) ;

895 A w a i t P u l s e ( ) ;

896 }

897

898 // To reset the ADC pull the SCLK high for 5 data periods

899 void ADC24 : : ResetAdc ( )

900 {

901 PORTD |= (1 << PSCLK) ;

902 d e l a y M i c r o s e c o n d s ( 1 4 4 0 ) ;

903 PORTD &= 0 b11111111ˆ(1<<PSCLK) ;

904 }

905

906 float ADC24 : : Update ( )

907 {

908 // Setup variables

909 long int i n p u t V a r = 0 ; //result variable

910 long int mask = 1L<<23; //mask to add data (write int 1, force to be long, then bitshift by 23)

911

912 AwaitAdc ( ) ; // Wait for ADC to become ready

913 d e l a y M i c r o s e c o n d s ( 2 ) ;
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914

915 // Loop through and recieve each bit

916 for (int i = 0 ; i < 2 4 ; i ++)

917 {

918 PORTD |= (1 << PSCLK) ; //Toggle SCLK high to send new bit

919 d e l a y M i c r o s e c o n d s ( 2 ) ; // Allow line to settle

920 i n p u t V a r |= ( PIND&(1<<PDATA) ) ? mask : 0 ; // OR assignment, (if new bit is high, OR with mask,

else 0)

921 d e l a y M i c r o s e c o n d s ( 2 ) ; // Allow line to settle

922 PORTD &= 0 b11111111ˆ(1<<PSCLK) ; //Return SCLK low

923 mask = mask>>1; // Decrement

924 }

925

926 // Declare number to convert 0 - 2ˆ23 integer -> 0-1 decimal

927 const float d i v i s o r = 8388607; // (2ˆ23 - 1) but you cannot store it like that

928

929 // Identify if negative (two’s compliment)

930 if ( ( 1 L<<23) & i n p u t V a r ) //Mask to identify if the number is negative

931 {

932 i n p u t V a r = ˜ i n p u t V a r ; // Invert all the bits

933 i n p u t V a r = i n p u t V a r + 1 ; // Add one

934 i n p u t V a r &= 0 x 0 0 7 f f f f f ; // Set bits 23 - 31

935 // This is required because we are dealing with a 24 bit number stored in a 32 bit integer

936

937 // We now have a positive number and can return it as normal as long as we make it negative

938 return −((float ) i n p u t V a r ) / d i v i s o r ;

939 }

940 else {return ( (float ) i n p u t V a r ) / d i v i s o r ;}

941 }

The algorithm used

This was the algorithm used.

1 /*#=============================================
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2 #˜˜˜˜˜ PID Library ˜˜˜˜˜˜˜

3 #---------------------------------------------

4 # Interface Code

5 # V1.0.1

6 # Author - Brett Beauregard

7 # Date: 12/2012

8 # Copyright: Brett Beauregard, 2012, br3ttb@gmail.com

9 #

10 # Modified for use with the Arduino Temprature Controller

11 # by Aaron Jones, 2015

12 #---------------------------------------------

13 # This program is free software: you can redistribute it and/or modify

14 # it under the terms of the GNU General Public License as published by

15 # the Free Software Foundation, either version 3 of the License, or

16 # (at your option) any later version.

17 #

18 # This program is distributed in the hope that it will be useful,

19 # but WITHOUT ANY WARRANTY; without even the implied warranty of

20 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

21 # GNU General Public License for more details.

22 #

23 # You should have received a copy of the GNU General Public License

24 # along with this program. If not, see <http://www.gnu.org/licenses/>.

25 #

26 # ------------------------------------------*/

27

28

29 // ---- PID Class ----

30 class PID

31 {

32 public :

33

34 //Constants used in some of the functions below

35 # d e f i n e AUTOMATIC 1
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36 # d e f i n e MANUAL 0

37 # d e f i n e DIRECT 0

38 # d e f i n e REVERSE 1

39

40 //commonly used functions

**************************************************************************

41 PID (double∗ , double∗ , double∗ , // * constructor. links the PID to the Input, Output, and

42 double , double , double , int ) ; // Setpoint. Initial tuning parameters are also set

here

43

44 void SetMode (int Mode ) ; // * sets PID to either Manual (0) or Auto (non-0)

45

46 bool Compute ( ) ; // * performs the PID calculation. it should be

47 // called every time loop() cycles. ON/OFF and

48 // calculation frequency can be set using SetMode

49 // SetSampleTime respectively

50

51 void S e t O u t p u t L i m i t s (double , double ) ; //clamps the output to a specific range. 0-255 by

default, but

52 //it’s likely the user will want to change this depending on

53 //the application

54

55 //available but not commonly used functions

********************************************************

56 void S e t T u n i n g s (double , double , // * While most users will set the tunings once in the

57 double ) ; // constructor, this function gives the user the option

58 // of changing tunings during runtime for Adaptive

control

59 void S e t C o n t r o l l e r D i r e c t i o n (int ) ; // * Sets the Direction, or "Action" of the controller.

DIRECT

60 // means the output will increase when error is positive. REVERSE

61 // means the opposite. it’s very unlikely that this will be needed

62 // once it is set in the constructor.

63 void c l e a r H i s t o r y ( ) ; // Added by AJ on 15/12/2014, clears history by setting

Page 114 of 150



Highly Stable Compact Digital Temperature Controller for use with Ultrastable Atomic Systems. Final Report

ITerm = 0;

64

65 //Display functions ****************************************************************

66 double GetKp ( ) ; // These functions query the pid for interal values.

67 double GetKi ( ) ; // they were created mainly for the pid front-end,

68 double GetKd ( ) ; // where it’s important to know what is actually

69 int GetMode ( ) ; // inside the PID.

70 int G e t D i r e c t i o n ( ) ; //

71

72 private :

73 void I n i t i a l i z e ( ) ;

74

75 double dispKp ; // * we’ll hold on to the tuning parameters in user-entered

76 double d i s p K i ; // format for display purposes

77 double dispKd ; //

78

79 double kp ; // * (P)roportional Tuning Parameter

80 double k i ; // * (I)ntegral Tuning Parameter

81 double kd ; // * (D)erivative Tuning Parameter

82

83 int c o n t r o l l e r D i r e c t i o n ;

84

85 double ∗myInput ; // * Pointers to the Input, Output, and Setpoint variables

86 double ∗myOutput ; // This creates a hard link between the variables and the

87 double ∗m y S e t p o i n t ; // PID, freeing the user from having to constantly tell us

88 // what these values are. with pointers we’ll just know.

89

90 double ITerm , l a s t I n p u t ;

91

92 double outMin , outMax ;

93 bool i nAuto ;

94 } ;

95

96 // ==== Define PID Class =====
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97 PID : : PID (double∗ I n p u t , double∗ Output , double∗ S e t p o i n t ,

98 double Kp , double Ki , double Kd , int C o n t r o l l e r D i r e c t i o n )

99 {

100

101 myOutput = Outpu t ;

102 myInput = I n p u t ;

103 m y S e t p o i n t = S e t p o i n t ;

104 inAuto = false ;

105

106 PID : : S e t O u t p u t L i m i t s ( 0 , 255) ; //default output limit corresponds to

107 //the arduino pwm limits

108

109 PID : : S e t C o n t r o l l e r D i r e c t i o n ( C o n t r o l l e r D i r e c t i o n ) ;

110 PID : : S e t T u n i n g s ( Kp , Ki , Kd ) ;

111

112 }

113

114

115 /* Compute() **********************************************************************

116 * This, as they say, is where the magic happens. this function should be called

117 * every time "void loop()" executes. the function will decide for itself whether a new

118 * pid Output needs to be computed. returns true when the output is computed,

119 * false when nothing has been done.

120 **********************************************************************************/

121 bool PID : : Compute ( )

122 {

123 if ( ! inAuto ) return false ;

124 //Serial.println("Actually ran!");

125

126 /*Compute all the working error variables*/

127 double i n p u t = ∗myInput ;

128 double e r r o r = ∗m y S e t p o i n t − i n p u t ;

129 ITerm+= ( k i ∗ e r r o r ) ;

130 if ( ITerm > outMax ) ITerm= outMax ;
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131 else if ( ITerm < outMin ) ITerm= outMin ;

132 double d I n p u t = ( i n p u t − l a s t I n p u t ) ;

133

134 /* Serial.println(error);

135 Serial.println(kp*error);

136 Serial.println(ITerm);

137 Serial.println(kd*dInput);*/

138

139 /*Compute PID Output*/

140 double o u t p u t = kp ∗ e r r o r + ITerm− kd ∗ d I n p u t ;

141 //Serial.println(output);

142 if ( o u t p u t > outMax ) o u t p u t = outMax ;

143 else if ( o u t p u t < outMin ) o u t p u t = outMin ;

144 ∗myOutput = o u t p u t ;

145

146 return true ;

147 }

148

149

150 /* SetTunings(...)*************************************************************

151 * This function allows the controller’s dynamic performance to be adjusted.

152 * it’s called automatically from the constructor, but tunings can also

153 * be adjusted on the fly during normal operation

154 ******************************************************************************/

155 void PID : : S e t T u n i n g s (double Kp , double Ki , double Kd )

156 {

157 if ( Kp<0 | | Ki<0 | | Kd<0) return ;

158

159 dispKp = Kp ; d i s p K i = Ki ; dispKd = Kd ;

160

161 kp = Kp ;

162 k i = Ki ;

163 kd = Kd ;

164
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165 if ( c o n t r o l l e r D i r e c t i o n ==REVERSE)

166 {

167 kp = (0 − kp ) ;

168 k i = (0 − k i ) ;

169 kd = (0 − kd ) ;

170 }

171 }

172

173 /* SetOutputLimits(...)****************************************************

174 * This function will be used far more often than SetInputLimits. while

175 * the input to the controller will generally be in the 0-1023 range (which is

176 * the default already,) the output will be a little different. maybe they’ll

177 * be doing a time window and will need 0-8000 or something. or maybe they’ll

178 * want to clamp it from 0-125. who knows. at any rate, that can all be done

179 * here.

180 **************************************************************************/

181 void PID : : S e t O u t p u t L i m i t s (double Min , double Max)

182 {

183 if ( Min >= Max) return ;

184 outMin = Min ;

185 outMax = Max ;

186

187 if ( inAuto )

188 {

189 if (∗myOutput > outMax ) ∗myOutput = outMax ;

190 else if (∗myOutput < outMin ) ∗myOutput = outMin ;

191

192 if ( ITerm > outMax ) ITerm= outMax ;

193 else if ( ITerm < outMin ) ITerm= outMin ;

194 }

195 }

196

197 /* SetMode(...)****************************************************************

198 * Allows the controller Mode to be set to manual (0) or Automatic (non-zero)
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199 * when the transition from manual to auto occurs, the controller is

200 * automatically initialized

201 ******************************************************************************/

202 void PID : : SetMode (int Mode )

203 {

204 bool newAuto = ( Mode == AUTOMATIC) ;

205 if ( newAuto == ! inAuto )

206 { /*we just went from manual to auto*/

207 PID : : I n i t i a l i z e ( ) ;

208 }

209 inAuto = newAuto ;

210 }

211

212 /* Initialize()****************************************************************

213 * does all the things that need to happen to ensure a bumpless transfer

214 * from manual to automatic mode.

215 ******************************************************************************/

216 void PID : : I n i t i a l i z e ( )

217 {

218 ITerm = ∗myOutput ;

219 l a s t I n p u t = ∗myInput ;

220 if ( ITerm > outMax ) ITerm = outMax ;

221 else if ( ITerm < outMin ) ITerm = outMin ;

222 }

223

224 /* SetControllerDirection(...)*************************************************

225 * The PID will either be connected to a DIRECT acting process (+Output leads

226 * to +Input) or a REVERSE acting process(+Output leads to -Input.) we need to

227 * know which one, because otherwise we may increase the output when we should

228 * be decreasing. This is called from the constructor.

229 ******************************************************************************/

230 void PID : : S e t C o n t r o l l e r D i r e c t i o n (int D i r e c t i o n )

231 {

232 if ( inAuto && D i r e c t i o n != c o n t r o l l e r D i r e c t i o n )
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233 {

234 kp = (0 − kp ) ;

235 k i = (0 − k i ) ;

236 kd = (0 − kd ) ;

237 }

238 c o n t r o l l e r D i r e c t i o n = D i r e c t i o n ;

239 }

240

241 /* Status Funcions*************************************************************

242 * Just because you set the Kp=-1 doesn’t mean it actually happened. these

243 * functions query the internal state of the PID. they’re here for display

244 * purposes. this are the functions the PID Front-end uses for example

245 ******************************************************************************/

246 double PID : : GetKp ( ) { return dispKp ; }

247 double PID : : GetKi ( ) { return d i s p K i ;}

248 double PID : : GetKd ( ) { return dispKd ;}

249 int PID : : GetMode ( ) { return i nAuto ? AUTOMATIC : MANUAL;}

250 int PID : : G e t D i r e c t i o n ( ) { return c o n t r o l l e r D i r e c t i o n ;}

251 void PID : : c l e a r H i s t o r y ( ) { ITerm = 0 ;}

H.1.2 User Interface.py

This file contains the user interface.

1 #=============================================

2 #˜˜˜˜˜ Arduino Temprature Controller ˜˜˜˜˜˜˜

3 #---------------------------------------------

4 # Interface Code

5 # V1.0

6 # Author - Aaron Jones

7 # Date: 25/03/2015

8 # Copyright Aaron Jones, 2015

9 #---------------------------------------------

10 # This program is free software: you can redistribute it and/or modify

11 # it under the terms of the GNU Lesser General Public License as published by
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12 # the Free Software Foundation, either version 3 of the License, or

13 # (at your option) any later version.

14 #

15 # This program is distributed in the hope that it will be useful,

16 # but WITHOUT ANY WARRANTY; without even the implied warranty of

17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

18 # GNU General Public License for more details.

19 #

20 # You should have received a copy of the GNU Lesser General Public License

21 # along with this program. If not, see <http://www.gnu.org/licenses/>.

22 #

23 # The inlcluded file GUI.py uses PyQt4 which is under the fuller GPL

24 #-------------------------------------------

25 # The following code is designed to be used

26 # with an Arduino Nano and the custom circuit

27 # designed and built by Aaron Jones, 4th Yr MSci

28 # Physics Student, University of Birmingham.

29 #

30 # There are two modules. The first module is called

31 # the user module and runs on a computer

32 # connected to the Arduino and allows the setting

33 # of variables and output of performace data.

34 # This is the second module called the control module

35 # and that runs on the Arduino actually controlling

36 # the temprature.

37 #

38 # Concept

39 # The concept is that the Arduino controls

40 # the temprature using a 16 Bit ADC using an I2C

41 # link. Proccess this infomation in this script,

42 # and then outputs this to a DAC back over the I2C

43 # link. The voltage from the DAC is proccessed by a

44 # analouge circuit to control a peltier junction.

45 #
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46 # A report was written on this program

47 # as part of a 4th Yr Project. This explains

48 # the method in more detail

49 # and contains circuit diagrams.

50 #

51 # Dependancies

52 # - User_Interface.py (This one)

53 # - Control Module (Arduino_TempController.ino)

54 # - Python Libaries as inported below

55 # - GUI.py

56 #

57 # Acknowlagements

58 # The code used to access the timer2 function is from:

59 # http://forum.arduino.cc/index.php?topic=62964.0-

60 # The author is davekw7x

61 #

62 # The code used for the 24 Bit ADC is modified from Iain MacIvers

63 # work in 2014 for the University of Birmingham, Cold Atoms,

64 # GG-TOP group studies

65 #

66 # The PID has been modified from http://playground.arduino.cc/Code/PIDLibrary

67 # and is written by Brett Beauregard, contact: br3ttb@gmail.com

68 #

69 # Command Characters

70 # The following characters are used for sending commands

71 # between the two programs

72 # - m -> Message, the next line will be a message to the user

73 # - h -> Handshake, please acknowledge that the script is running

74 # - d -> Data

75 #

76 # Constants

77 # In this section there are a number of user tuneable constants

78 # These are globally accessible and called when required

79 # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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80 #

81 # --------------------------

82 # User Editable Parameters

83 # --------------------------

84 #

85 #

86 # Serial Connection

87 # -----------------

88 # Please uncomment the port on which the Arduino is connected

89 # This can be found by opening the Arduino IDE and looking in the lower right corner

90 d e v i c e l i n k = ’/dev/ttyUSB0’ # Linux - Normally ’/dev/ttyUSB0’ or ’/dev/ttyUSB1’ etc

91 #device_link = ’COM7’ # Windows - Normally ’COM7’/’COM8’ etc

92 #device_link = ’/dev/pts/13’ # Linux - Imitation Arduino

93 #

94 # Buffer Length

95 #-----------------

96 # When data is read in from the Arudino, the last X

97 # values are stored in an array. This is the lenght of

98 # that array.

99 # Typical Value = 100

100 CONSTANT BUFFER LENGHT = 75

101 #

102 # Graph Length

103 #-----------------

104 # When a graph is called this is the number of points

105 # to plot on the X axis. This must be less than

106 # or equal to the buffer lenght

107 # Typical Value = 75 (normally equal to buffer lenght)

108 CONSTANT GRAPH LENGHT = 75

109 #

110 # Check on buffer lenght

111 if (CONSTANT BUFFER LENGHT < CONSTANT GRAPH LENGHT) :

112 print "Please change buffer lenght to a value greater than"

113 print "or equal to the graph lenght in the file computer.py"

Page 123 of 150



Highly Stable Compact Digital Temperature Controller for use with Ultrastable Atomic Systems. Final Report

114 raise S y s t e m E x i t

115 #

116 #=================================================

117

118

119 # ===================

120 # PreAmble

121 # ==================

122

123 #Import required libaries

124 import s e r i a l

125 import t h r e a d

126 import s t r u c t

127 import s y s

128 import t ime

129 import numpy as np

130 import p y l a b

131 import m a t p l o t l i b . p y p l o t a s p l t

132

133

134 # Set up globals and locks

135 u s e r l a s t r e s p o n s e = ""

136 u s e r l a s t r e s p o n s e l o c k = t h r e a d . a l l o c a t e l o c k ( )

137

138

139 # ===================

140 # Definitions

141 # ==================

142

143 # -----------------

144 # Main Functions

145 # -----------------

146 def p r e l i m s ( ) :

147 # Welcome the user
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148 print (’============================================’ )

149 print (’UoB Digital Temprature Controller UI Program’ )

150 print (’--------------------------------------------’ )

151 print (’Author: Aaron Jones’ )

152 print ’Version ’ , v e r s i o n

153 print "NB The GUI for this application is only available"

154 print "under the full terms of the GPL."

155 print (’============================================’ )

156

157 while True :

158 isGUI = raw_input ("\nWould you like to use the GUI for this session? (y/n):" ) #Ask user whether

to use the GUI

159 if ( isGUI == ’y’ ) :

160 isGUI = True

161 return isGUI

162 elif ( isGUI == ’n’ ) :

163 isGUI = F a l s e

164 return isGUI

165 else :

166 print ":( Sorry I can only accept the characters ’y’ or ’n’. Lets try again?"

167

168 # Between these functions three classes, arduino, user and temprature

169 # are globally defined and initilised in global scope

170

171 def main ( isGUI ) :

172 global u s e r

173 global a r d u i n o

174 global t e m p r a t u r e

175

176 if (not ( isGUI ) ) :

177 # Call worker thread, program will exit when this exits

178 worker ( F a l s e )

179 else :

180 print "Setting up GUI..."
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181 import GUI

182 from PyQt4 import QtGui , QtCore

183 print "Imports Ok!"

184 app = QtGui . Q A p p l i c a t i o n ( s y s . a rgv ) #Open QT Workspace

185 print "Qt running. Now drawing window..."

186 window = GUI . MainWindow ( a r d u i n o , t e m p r a t u r e , u s e r )

187 print "Drawn! Calling worker thread..."

188 # Call a worker thread to handle the Arduino and Termainal requests

189 # The terminal is output only, so only certain functions will be called

190 # This reduces the number of locks required

191 GUI Worker = GUI . Thread ( worker )

192 GUI Worker . s t a r t ( )

193 print "Displaying GUI in 3,2,1!"

194 s y s . e x i t ( app . e x e c ( ) )

195

196 # -----------------

197 # Functions

198 # -----------------

199 def worker ( GUI ) :

200

201 # Import some global variables.

202 global u s e r l a s t r e s p o n s e

203

204 global u s e r

205 global a r d u i n o

206 global t e m p r a t u r e

207

208 # Connect to the Arduino

209 a r d u i n o . c o n n e c t ( )

210

211 if ( GUI ) :

212 u s e r l a s t r e s p o n s e l o c k . a c q u i r e ( ) # Aquire lock, blocking any input

213 else :

214 # spawn new thread to capture user input
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215 t h r e a d . s t a r t n e w t h r e a d ( u s e r . c a p t u r e I n p u t , ( ) )

216

217 while (not ( u s e r l a s t r e s p o n s e l o c k . l o c k e d ( ) ) ) :

218 t ime . s l e e p (1 e−9) #Sleep for 1 nanosecond. (Not actually possible)

219

220 u s e r . p r i n t 2 (’Listening for data...’ )

221 # Enter a Loop

222 while ( True ) :

223 s y s . s t d o u t . f l u s h ( )

224 #Check to see if the user has requested control, is GUI open this will always be false

225 if (not ( u s e r l a s t r e s p o n s e l o c k . l o c k e d ( ) ) ) :

226 #Ask Arduino to go into silent mode

227 u s e r . r e s p o n d ( u s e r l a s t r e s p o n s e , t e m p r a t u r e ) # Call response function. No need to lock as

currently single threaded

228 t h r e a d . s t a r t n e w t h r e a d ( u s e r . c a p t u r e I n p u t , ( ) ) # ... this will relock the variable untill the

user is ready

229

230

231 # Read the next line from the Arduino

232 command , v a l u e = a r d u i n o . g e t L i n e ( )

233

234 # If blank, skip

235 if ( command == 0) :

236 t ime . s l e e p (1 e−6)

237 # If it is a message just print it

238 elif ( command == a r d u i n o . msg char ) :

239 u s e r . p r i n t 2 (’Device says:’ )

240 u s e r . p r i n t 2 ( v a l u e )

241

242 # Else if it is data add it to the data

243 elif ( command == a r d u i n o . d a t a c h a r ) :

244 t e m p r a t u r e . addData ( t ime . t ime ( ) , v a l u e )

245 if (not ( GUI ) and t e m p r a t u r e . g raph and a r d u i n o . b u f f e r o k ( ) ) :

246 t e m p r a t u r e . reDraw ( ) # Only redaw if the buffer is okay
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247 # Dont redraw if the GUI is open, let Qt handel that

248

249 elif ( command == a r d u i n o . handshake ) :

250 a r d u i n o . s e r . w r i t e ( a r d u i n o . handshake )

251

252 def l o t s C h a r ( char ,Num) :

253 s t r i n g = ’’

254 for i in range ( 0 ,Num) :

255 s t r i n g = s t r i n g + c h a r

256 return s t r i n g

257 # -----------------

258 # Classes

259 # -----------------

260

261 # User Input Class

262 class USB:

263 # ------------------------------

264 # Date: 30/12/14, Last Modified - 30/12/14

265 # This class holds functions for interacting with the Arduino

266 # ------------------------------

267 def i n i t ( s e l f , d e v i c e l i n k ) : #Initilise class

268 print ’Opening connection on’ , d e v i c e l i n k

269 try :

270 s e l f . s e r = s e r i a l . S e r i a l ( d e v i c e l i n k , 9600)

271 except : #print error message if this does not work

272 print ’\n\n\n’

273 print ’No devices are available on ’ , d e v i c e l i n k

274 print ’Please check update where the Arduino located’

275 print ’(The Arduino IDE can do this, try Arduino IDE -> Tools -> Serial Port)’

276 print ’and update this file’

277 print ’\n\n\n’

278 raise

279

280 #Set up signal characters
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281 s e l f . handshake = ’h’

282 s e l f . msg char = ’m’

283 s e l f . d a t a c h a r = ’d’

284 s e l f . g e t V a r s = ’v’

285 s e l f . g e t C o n s t a n t s R u n n i n g = F a l s e

286

287 # Arduino Connect

288 def c o n n e c t ( s e l f ) :

289 # This function waits untill a Arduino with the correct software running is connected

290 print "Attempting to find Arduino Temprature Controller"

291 print "\tTry resetting the Arduino if this doesn’t work"

292 print "\tor ’ctrl + c’ to exit the program"

293 loop = True

294 while ( l oop ) :

295 command = s e l f . s e r . r e a d ( 1 ) #wait until Arduino contacts

296 if ( command == s e l f . handshake ) :

297 s e l f . s e r . w r i t e ( s e l f . handshake ) #test for handshake and respond

298 while ( s e l f . s e r . i n W a i t i n g ( ) > 0) :

299 s e l f . s e r . r e a d ( 1 )

300 loop = F a l s e #exit loop

301 print "Found!"

302

303 def g e t L i n e ( s e l f ) :

304 while ( s e l f . g e t C o n s t a n t s R u n n i n g ) : #Check the buffer isn’t locked

305 t ime . s l e e p (1 e−6)

306 if ( s e l f . s e r . i n W a i t i n g ( ) < 2) : #Data always arrives in a minimum pair of two, so wait

307 return ( 0 , 0 )

308 return ( s e l f . s e r . r e a d ( 1 ) , s e l f . s e r . r e a d l i n e ( ) )

309

310 def b u f f e r o k ( s e l f ) :

311 if ( s e l f . s e r . i n W a i t i n g ( ) < 1) :

312 return True

313 else :

314 return F a l s e
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315

316 def g e t C o n s t a n t s ( s e l f ) :

317 s e l f . g e t C o n s t a n t s R u n n i n g = True # Lock the buffer so the other processes cannot read it

318 s e l f . s e r . w r i t e ( s e l f . g e t V a r s ) #Write notification to Arduino

319 #Wait for line to be sent and read

320 r e s p o n s e = s e l f . s e r . r e a d l i n e ( )

321 s e l f . g e t C o n s t a n t s R u n n i n g = F a l s e # Once we have our information unlock the buffer

322 #print ’\n ’, response

323 v a l u e s = r e s p o n s e [ 3 : ]

324 Kp , Ki , Kd , S e t p o i n t , Accuracy = v a l u e s . s p l i t ("," )

325 return ( Kp ) , ( Ki ) , ( Kd ) , ( S e t p o i n t ) , ( Accuracy )

326

327 def s e n d C o n s t a n t s ( s e l f , Kp , Ki , Kd , S e t P o i n t , Accuracy ) :

328 #print Kp, ’ ’,Ki, ’ ’,Kd, ’ ’,SetPoint, ’ ’

329 s e l f . s e r . w r i t e (’V’ )

330 s e l f . s e r . w r i t e ( s t r u c t . pack (’@f’ , Kp ) )

331 s e l f . s e r . w r i t e ( s t r u c t . pack (’@f’ , Ki ) )

332 s e l f . s e r . w r i t e ( s t r u c t . pack (’@f’ , Kd ) )

333 s e l f . s e r . w r i t e ( s t r u c t . pack (’@f’ , S e t P o i n t ) )

334 s e l f . s e r . w r i t e ( s t r u c t . pack (’@f’ , Accuracy ) )

335 s e l f . s e r . w r i t e (’V’ )

336 class UI :

337 # ------------------------------

338 # Date: 30/12/14, Last Modified - 30/12/14

339 # This class holds functions for interacting with the user

340 # ------------------------------

341 def i n i t ( s e l f , GUIin ) : #Initilise class

342 s e l f . c l e a r m s g = ’ ’ #A set of spaces used

to overwrite messages in terminal

343 s e l f . bo t tomLine = ’Please choose an option (press m and return for menu):’

344 s e l f . GUI = GUIin

345

346 # User Input Function

347 def c a p t u r e I n p u t ( s e l f ) :
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348 #Function to capture key presses from the user, this should be started in a new thread

349 global u s e r l a s t r e s p o n s e #declare variable as global to allow editing

350 u s e r l a s t r e s p o n s e l o c k . a c q u i r e ( ) #aquire lock

351 u s e r l a s t r e s p o n s e = raw_input ("" ) #wait for user input and read it in

352 u s e r l a s t r e s p o n s e l o c k . r e l e a s e ( ) #release lock, allowing main to see its contents

353

354 def p r i n t 2 ( s e l f , message ) :

355 # This function will output data one line above some text output to the user if the GUI is not

active

356 if ( s e l f . GUI ) :

357 print message

358 else :

359 print ’\r’ , s e l f . c l e a r m s g , #overwrite last ’Please choose...’ with spaces

360 print ’\r’ , message #print the message

361 print s e l f . bo t tomLine , #re-output the bottom line

362 s y s . s t d o u t . f l u s h ( ) #flush so the user can actually see it

363

364 def r e s p o n d ( s e l f , r e s p o n s e , d a t a t y p e ) : #Function to handel what happens when the user makes a

request

365 global a r d u i n o

366 global t e m p r a t u r e

367 if ( r e s p o n s e == ’m’ ) : #Test for menu option

368 s e l f . d i s p l a y m e n u ( )

369 elif ( r e s p o n s e == ’t’ ) :

370 ok = d a t a t y p e . s t a r t G r a p h (’Seconds since the epoch’ ,’Temprature (Celsius)’ ,’Temprature of

Component’ )

371 if ok == 1 :

372 d a t a t y p e . k i l l G r a p h ( )

373 elif ( r e s p o n s e == ’s’ ) : #Test for menu option

374 s t a t O u t = d a t a t y p e . s t a t s ( )

375 if (not ( s t a t O u t ) ) :

376 print ’\nSorry no data gathered yet’

377 else :

378 print ’\nLast Recorded Time: ’ , t ime . c t i m e ( s t a t O u t [ 0 ] )
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379 print ’Last Recorded Temprature: ’ , s t a t O u t [ 1 ]

380 print ’Mean Temprature: ’ , s t a t O u t [ 2 ]

381 print ’Standard Deviation: ’ , s t a t O u t [ 3 ]

382 print ’Peak to peak: ’ , s t a t O u t [ 4 ]

383 elif ( r e s p o n s e == ’v’ ) :

384 OutVal = a r d u i n o . g e t C o n s t a n t s ( )

385 print ’\nKp = ’ , OutVal [ 0 ]

386 print ’Ki =’ , OutVal [ 1 ]

387 print ’Kd =’ , OutVal [ 2 ]

388 print ’Setpoint = ’ , OutVal [ 3 ]

389 elif ( r e s p o n s e == ’f’ ) :

390 print ’\n’

391 f i l eName = raw_input (’Please enter a short filename: ’ )

392 desc = raw_input (’Please enter a longer description of this measurement: ’ )

393 t e m p r a t u r e . s t a r t F o u t ( f i leName , desc )

394 elif ( r e s p o n s e == ’F’ ) :

395 t e m p r a t u r e . k i l l F o u t

396 elif ( r e s p o n s e == ’e’ ) :

397 if ( t e m p r a t u r e . f o u t ) :

398 t e m p r a t u r e . k i l l F o u t

399 raise S y s t e m E x i t

400 else : #if its not valid inform the user

401 print "Oops, I sorry I don’t recognise that option"

402 print s e l f . bo t tomLine ,

403 s y s . s t d o u t . f l u s h ( )

404

405 def d i s p l a y m e n u ( s e l f ) :

406 print ’\n’ ,

407 while ( True ) :

408 print ’======== Menu ========’

409 print ’ - m -> display this menu’

410 print ’ - t -> Toggle Temprature graph’

411 print ’ - s -> Output Statistics’

412 print ’ - v -> Get Variables from Arduino’
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413 print ’ - f -> Start outputing data to file’

414 print ’ - F -> Stop outputting data to file’

415 print ’ - e -> Exit program’

416 print ’======================’

417 print ’NB Alway press return after an input’

418 print ’the progam can only accept one character’

419 print ’at a time!’

420 print ’Please press q to quit’

421 r e s p o n s e = raw_input ("or a character to find out more..." )

422 if ( r e s p o n s e == ’q’ ) :

423 return

424 elif ( r e s p o n s e == ’m’ ) :

425 print ’The m function displays this menu’

426 print ’and lets you viewed detailed help’

427 print ’on each function’

428 elif ( r e s p o n s e == ’t’ ) :

429 print ’Toggle the temprature graph between on and off’

430 elif ( r e s p o n s e == ’s’ ) :

431 print ’Output the following statistics’

432 print ’Last Recorded Time and Temprature, Mean Temprature and standard deviation’

433 elif ( r e s p o n s e == ’v’ ) :

434 print ’Load the proportional, intergral and differntial constanants’

435 print ’and the setpoint from the Arduino and display them’

436 elif ( r e s p o n s e == ’f’ or r e s p o n s e == ’F’ ) :

437 print ’Start or stop outputting data to file’

438 elif ( r e s p o n s e == ’e’ ) :

439 print ’Exit the program fully’

440 else :

441 print "Sorry I don’t recongnise that option"

442 raw_input ("Please press return" )

443

444 # Data Class

445 class Data :

446 # ------------------------------
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447 # Date: 23/12/14, Last Modified - 30/12/14

448 # This class holds data and handles the plotting of graphs

449 # ------------------------------

450 def i n i t ( s e l f , maxGraphPoints , m a x S t o r e P o i n t s ) : #Initilise function

451 s e l f . x d a t a = [ ] #Create blank array for x and y data

452 s e l f . y d a t a = [ ]

453 s e l f . g raph = F a l s e #No graph present yet

454 s e l f . f o u t = F a l s e #Do not output data to file

455 s e l f . fHand le = F a l s e

456 if ( maxGraphPoin ts > m a x S t o r e P o i n t s ) : #The amount of data in the store must be greater than the

number of store points

457 raise S t a n d a r d E r r o r (’Number of Store points must be >= number of graph points’ )

458 s e l f . g P o i n t s = maxGraphPoin ts # Load maximum number of points for graph and store

459 s e l f . s P o i n t s = m a x S t o r e P o i n t s

460

461 def addData ( s e l f , x , y ) :

462 s e l f . x d a t a . append (float ( x ) ) #Append new data

463 s e l f . y d a t a . append (float ( y ) )

464 #print ’\n’, self.ydata

465 while (len ( s e l f . x d a t a )>s e l f . s P o i n t s ) : #Delete old data to make room in memory for new data

466 s e l f . x d a t a . pop ( 0 )

467 s e l f . y d a t a . pop ( 0 )

468 if ( s e l f . g raph ) :

469 s e l f . l . s e t d a t a ( s e l f . x d a t a [− s e l f . g P o i n t s : ] , s e l f . y d a t a [− s e l f . g P o i n t s : ] )

470 # update graph data. self.l.set_data = A pointer function that allows setting of data

471 # The function accepts two arguments, xdata and ydata

472 # Select the data from the store, and select the last points using slicing

473 # It should fail for npoints<gPoints, but python is forgiving

474 s e l f . axe s . r e l i m ( ) # Recalculate limits

475 s e l f . axe s . a u t o s c a l e v i e w ( True , True , True ) #Autoscale

476 if ( s e l f . f o u t ) :

477 s e l f . da t a2 F ( x , y )

478

479 def reDraw ( s e l f ) :
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480 p l t . draw ( ) # Redraw

481

482 def s t a r t G r a p h ( s e l f , x l a b e l , y l a b e l , t i t l e ) :

483 if ( s e l f . g raph ) :

484 return 1 #test to see if the graph is already open

485

486 p l t . i o n ( ) # Enable interactive mode, if not already

487 s e l f . f i g = p l t . f i g u r e ( ) # Create figure, store pointer in class

488 s e l f . axe s = s e l f . f i g . a d d s u b p l o t ( 1 1 1 ) # Add subplot (dont worry only one plot appears)

489 s e l f . axe s . s e t a u t o s c a l e o n ( True ) # enable autoscale

490 s e l f . axe s . a u t o s c a l e v i e w ( True , True , True )

491 s e l f . l , = p l t . p l o t ( [ ] , [ ] , ’r-’ ) # Plot blank data

492 p l t . x l a b e l ( x l a b e l ) # Label Axis

493 p l t . y l a b e l ( y l a b e l )

494 p l t . t i t l e ( t i t l e ) # Add title

495 p l t . g r i d ( ) # Add grid

496 s e l f . g raph = True

497 return 0

498

499 def k i l l G r a p h ( s e l f ) :

500 p l t . c l f ( ) #Clear all objects related to the figure, leave figure open

501 p l t . c l o s e ( ) # Close figure

502 s e l f . g raph = F a l s e # Inform other functions that the figure is closed

503

504 def s t a t s ( s e l f ) :

505 if (not ( s e l f . x d a t a ) ) :

506 return

507 l a s t X = s e l f . x d a t a [−1]

508 l a s t Y = s e l f . y d a t a [−1]

509 meanY = np . mean ( s e l f . y d a t a )

510 stdY = np . s t d ( s e l f . y d a t a )

511 peak = ( np . amax ( s e l f . y d a t a ) ) − ( np . amin ( s e l f . y d a t a ) )

512

513 return ( l a s t X , l a s t Y , meanY , stdY , peak )
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514

515 def s t a r t F o u t ( s e l f , f i leName , n o t e ) : #Start outputing data to a file

516 if ( s e l f . f o u t ) :

517 global u s e r

518 u s e r . p r i n t 2 (’It looks like data is already being output\n’ )

519 return

520

521 s t a r t T i m e = t ime . gmtime ( ) #Determine current time

522

523 fName = ’Data/’ + str ( s t a r t T i m e [ 0 ] ) + str ( s t a r t T i m e [ 1 ] ) + str ( s t a r t T i m e [ 2 ] ) + ’_’

524 # Generate Filename ’YYYYMMDD_HHSS-fileName

525 fName = fName + str ( s t a r t T i m e [ 3 ] ) + str ( s t a r t T i m e [ 4 ] ) + ’-’ + f i l eName

526

527 b u f f e r D a t a = open ( fName+’-buff.dat’ ,’w’ )

528 b u f f S i z e = len ( s e l f . x d a t a )

529 for i in range ( 0 , b u f f S i z e ) :

530 b u f f e r D a t a . w r i t e (str ( s e l f . x d a t a [ i ] ) + ’,’ + str ( s e l f . y d a t a [ i ] ) + ’\n’ )

531 b u f f e r D a t a . c l o s e ( )

532

533 i n f o = open ( fName+’.info’ ,’w’ )

534 i n f o . w r i t e ( l o t s C h a r (’=’ , 3 0 ) +’\n’ )

535 i n f o . w r i t e (’\t UOB Temprature Controller Output File\n’ )

536 i n f o . w r i t e ( l o t s C h a r (’=’ , 3 0 ) +’\n\n’ )

537

538 i n f o . w r i t e (’Date Reading Taken: ’ )

539 i n f o . w r i t e ( t ime . s t r f t i m e (’%c’ , s t a r t T i m e ) +’\n’ )

540 i n f o . w r i t e (’Notes: ’ + n o t e + ’\n’ )

541

542 i n f o . w r i t e ( fName+’-buff.dat contains all the data on the buffer at the time that this

measurement started\n’ )

543 i n f o . w r i t e ( fName+’.dat contains data collected since the time of measurement\n’ )

544 i n f o . w r i t e ( fName+’.info (This file) is an automatically generated infomation file\n’ )

545 i n f o . w r i t e (’Column 1 of the data files is the date and time the column 2 data was recieved,

expressed in seconds since the UNIX epoch (1st Jan 1970)\n’ )
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546 i n f o . w r i t e (’Column 2 is the data, this is temprature data expressed in degrees celsius\n’ )

547 i n f o . w r i t e (’The data is comma seperated with a new line character expressing a new

measurement\n’ )

548 i n f o . c l o s e ( )

549

550 s e l f . fHand le = open ( fName+’.dat’ ,’w’ )

551 s e l f . f o u t = True

552

553 def da t a 2F ( s e l f , xda ta , y d a t a ) :

554 s e l f . fHand le . w r i t e (str ( x d a t a ) + ’,’ + str ( y d a t a ) + ’\n’ )

555

556 def k i l l F o u t ( s e l f ) :

557 s e l f . fHand le . c l o s e ( )

558 s e l f . fHand le = F a l s e

559 s e l f . f o u t = F a l s e

560

561 # ===================

562 # Call Main Function

563 # ==================

564 GLOBAL GUI = p r e l i m s ( ) # Call a preliminary function to start loading things

565

566 # Create Classes Globally, just about every function needs them

567 u s e r = UI (GLOBAL GUI) # Open class to hold UI functions

568 a r d u i n o = USB( d e v i c e l i n k )

569 t e m p r a t u r e = Data (CONSTANT GRAPH LENGHT, CONSTANT BUFFER LENGHT)

570

571 main (GLOBAL GUI) # Call Main to enter main loop

H.1.3 Readme.txt

The README.

1 #=============================================

2 # ˜ ˜ ˜ ˜ ˜ Arduino Tempra tu re C o n t r o l l e r ˜ ˜ ˜ ˜ ˜ ˜ ˜

3 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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4 A s i m p l e ( i s h ) program f o r ve ry h igh s t a b i l i t y

5 t e m p r a t u r e c o n t r o l f o r s c i e n t i f i c pu rposes ,

6 u s i n g on ly h o b b y i s t components

7

8 Th i s f o l d e r s h o u l d c o n t a i n t h e f o l l o w i n g f i l e s and d i r e c t o r i e s

9

10 Key F i l e s

11 −−−−−−−−−−−−

12 − U s e r I n t e r f a c e . py

13 − A r d u i n o T e m p C o n t r o l l e r

14 − A r d u i n o T e m p C o n t r o l l e r . i n o

15 − README. t x t

16 − P r o j e c t Rep o r t

17

18 The f i l e U s e r I n t e r f a c e . py i s a py thon 2 . 7 program

19 t h a t can run on a h o s t compute r and communicate

20 wi th t h e Arduino , g r a p h i n g t e m p r a t u r e s and c h a n g i n g

21 s e t p o i n t s on t h e f l y . NOTE any changes t o s e t p o i n t s

22 w i l l be l o s t when / i f t h e a r d u i n o i s r e s e t .

23

24 A r d u i n o T e m p C o n t r o l l e r . i n o i s t h e Arduino s k e t c h ( program )

25 t h a t needs t o be compi l ed and l o a d e d on to t h e Arduino .

26 Th i s program i s s t a n d a l o n e and once t h e Arduino i s r u n n i n g

27 no f u r t h e r i n p u t from t h e PC i s r e q u i r e d . Th i s i s t h e f i l e

28 t o p e r m a n e n t l e y e d i t t h e s e t p o i n t s f o r t h e t e m p r a t u r e c o n t r o l l e r

29

30 README. t x t i s t h i s f i l e

31

32 Othe r R e q u i r e d Programs

33 −−−−−−−−−−−−−−−−−−−−−−−−

34 − GUI . py

35 − Data

36

37 GUI . py i s a py thon module r e q u i r e d f o r d i s p l a y i n g t h e
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38 G r a p h i c a l User I n t e r f a c e f o r t h e U s e r I n t e r f a c e program .

39 Th i s r e q u i r e s PyQt which i s r e l e a s e d unde r t h e f u l l GPLv3 !

40

41 Data i s t h e Data f o l d e r .

42

43 U t i l i t i e s

44 −−−−−−−−−−−−−

45 − EpochToTime . py

46 − p l o t D a t a . py

47 − ArduinoSim . py

48 − R2T . py

49 − T2R . py

50 − c p u s t a t u s . sh

51

52 EpochToTime i s a s i m p l e py thon u t i l i t y t o c o n v e r t t h e

53 t ime used f o r d a t a ( s e c o n d s s i n c e t h e UNIX Epoch (1 s t Jan 1970)

54 i n t o a human r e a d a b l e t ime

55

56 p l o t D a t a . py Th i s i s a py thon u t i l i t y t o p l o t d a t a o u t p u t

57 by t h e U s e r I n t e r f a c e program . I t a c c e p t s one argument on

58 t h e command l i n e i e py thon p l o t D a t a . py Data / FileName . d a t

59

60 ArduinoSim . py Th i s i s a l i t t l e py thon u t i l i t y f o r

61 e m u l a t i n g t h e Arduino . I t j u s t g e n e r a t e s random numbers

62 n e a r 21 and o u t p u t s them ove r s e r i a l . You need t o

63 s e t u p a s e r i a l l oop u s i n g s o c a t , t h i s program i s LINUX ONLY.

64 Th i s program i s based h e v i l y on a S t a c k Exchange s o l u t i o n

65

66 R2T . py and T2R . py These progams g e n e r a t e a r e s i s t a n c e

67 from a t e m p r a t u r e o r v i c a a v e r s a f o r a t h o r l a b s 10k

68

69 c p u s t a t u s . sh Th i s i s a s h e l l s c r i p t t o m o n i t e r t h e

70 c o r e t e m p r a t u r e o f a r a s p b e r r y p i . Th i s i s n o t

71 my work and i s based of a s t a c k exchange s o l u t i o n

Page 139 of 150



Highly Stable Compact Digital Temperature Controller for use with Ultrastable Atomic Systems. Final Report

H.1.4 GUI.py

The Graphical User Interface.

1 #=============================================

2 #˜˜˜˜˜ Arduino Temprature Controller ˜˜˜˜˜˜˜

3 #---------------------------------------------

4 # Interface Code

5 # V1.0

6 # Author - Aaron Jones

7 # Date: 25/03/2015

8 # Copyright Aaron Jones, 2015

9 #---------------------------------------------

10 # This file provides a GUI for the python

11 # file User_Interface.py

12 # Please see User_Interface for further details

13 #

14 # NB This code requires PyQt4 which is released

15 # under the full GPLv3.

16 # =============================================

17

18 import s y s

19 from PyQt4 import QtGui , QtCore

20 import t ime

21

22 # This function will spawn a new thread with Qt

23 class Thread ( QtCore . QThread ) :

24 def i n i t ( s e l f , F u n c t i o n ) :

25 QtCore . QThread . i n i t ( s e l f )

26 s e l f . f u n c t i o n = F u n c t i o n

27

28 def run ( s e l f ) :

29 s e l f . f u n c t i o n ( True ) #Specify function

30 s e l f . e x e c ( ) #run

31

32 class MainWindow ( QtGui . QWidget ) :
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33

34 def i n i t ( s e l f , Ard , Temp , Ui ) :

35 super ( MainWindow , s e l f ) . i n i t ( )

36

37 s e l f . g r i d = QtGui . QGridLayout ( )

38 s e l f . g r i d . s e t S p a c i n g ( 1 0 )

39 s e l f . i n i t U I ( )

40 s e l f . t i m e r = QtCore . QTimer ( )

41 s e l f . t i m e r . t i m e o u t . c o n n e c t ( s e l f . e v e n t s )

42 s e l f . Maxt imerVal = 100

43 s e l f . t i m e r . s t a r t ( s e l f . Maxt imerVal )

44 s e l f . a r d = Ard

45 s e l f . temp = Temp

46 s e l f . u i = Ui

47

48 def i n i t U I ( s e l f ) :

49

50 # Set up Window

51 s e l f . s e tGeome t ry ( 1 0 0 , 100 , 500 , 100)

52 s e l f . s e t W i n d o w T i t l e (’Arduino Temprature Controller - Options’ )

53

54 msg = "Press Read Constants to find out :)"

55

56 # Setup Buttons

57 l a s t T e m p T e x t = QtGui . QLabel (’Last Recorded Temprature’ )

58 l a s t T i m e T e x t = QtGui . QLabel (’Time of last Recorded Temprature’ )

59 varTempText = QtGui . QLabel (’Variance’ )

60 avTempText = QtGui . QLabel (’Average’ )

61 peakTex t = QtGui . QLabel (’Peak to Peak Value’ )

62 ta rTempText = QtGui . QLabel (’Target Temprature’ )

63 a l l o w e d D e l t a = QtGui . QLabel (’Desired Stability’ )

64

65 s e l f . l a s tTemp = QtGui . QLabel (’0’ )

66 s e l f . l a s t T i m e = QtGui . QLabel (’0’ )
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67 s e l f . varTemp = QtGui . QLabel (’0’ )

68 s e l f . avTemp = QtGui . QLabel (’0’ )

69 s e l f . peakTemp = QtGui . QLabel (’0’ )

70 s e l f . t a r T e m p E d i t = QtGui . QLineEdi t ( msg )

71 s e l f . a l l o w e d D e l t a E d i t = QtGui . QLineEdi t ( msg )

72

73 s e l f . g r i d . addWidget ( l a s tTempText , 1 , 0 )

74 s e l f . g r i d . addWidget ( s e l f . las tTemp , 1 , 1 )

75

76 s e l f . g r i d . addWidget ( l a s t T i m e T e x t , 2 , 0 )

77 s e l f . g r i d . addWidget ( s e l f . l a s t T i m e , 2 , 1 )

78

79 s e l f . g r i d . addWidget ( varTempText , 3 , 0 )

80 s e l f . g r i d . addWidget ( s e l f . varTemp , 3 , 1 )

81

82 s e l f . g r i d . addWidget ( avTempText , 4 , 0 )

83 s e l f . g r i d . addWidget ( s e l f . avTemp , 4 , 1 )

84

85 s e l f . g r i d . addWidget ( peakText , 5 , 0 )

86 s e l f . g r i d . addWidget ( s e l f . peakTemp , 5 , 1 )

87

88 s e l f . g r i d . addWidget ( tarTempText , 6 , 0 )

89 s e l f . g r i d . addWidget ( s e l f . t a rTempEdi t , 6 , 1 )

90

91 s e l f . g r i d . addWidget ( a l l o w e d D e l t a , 7 , 0 )

92 s e l f . g r i d . addWidget ( s e l f . a l l o w e d D e l t a E d i t , 7 , 1 )

93

94 i = 10

95

96 kpText = QtGui . QLabel (’Proportional Constant’ )

97 k i T e x t = QtGui . QLabel (’Intergral Constant’ )

98 kdText = QtGui . QLabel (’Derivitive Constant’ )

99

100 s e l f . k p E d i t = QtGui . QLineEdi t ( msg )
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101 s e l f . k i E d i t = QtGui . QLineEdi t ( msg )

102 s e l f . k d E d i t = QtGui . QLineEdi t ( msg )

103

104 s e l f . g r i d . addWidget ( kpText , i , 0 )

105 s e l f . g r i d . addWidget ( s e l f . kpEdi t , i , 1 )

106

107 s e l f . g r i d . addWidget ( k iTex t , i +1 , 0 )

108 s e l f . g r i d . addWidget ( s e l f . k i E d i t , i +1 , 1 )

109

110 s e l f . g r i d . addWidget ( kdText , i +2 , 0 )

111 s e l f . g r i d . addWidget ( s e l f . kdEdi t , i +2 , 1 )

112

113 s e l f . shGraph = QtGui . QPushButton (’Show/Hide Graph’ , s e l f )

114 s e l f . shGraph . c l i c k e d . c o n n e c t ( s e l f . ShowGraph )

115 s e l f . g r i d . addWidget ( s e l f . shGraph , i +3 ,0 )

116

117 s e l f . Fout = QtGui . QPushButton (’Start Outputting to File’ , s e l f )

118 s e l f . Fout . c l i c k e d . c o n n e c t ( s e l f . f i l e O u t p u t )

119 s e l f . g r i d . addWidget ( s e l f . Fout , i +3 ,1 )

120

121 s e l f . s endCons t = QtGui . QPushButton (’Send New Constants’ , s e l f )

122 s e l f . s endCons t . c l i c k e d . c o n n e c t ( s e l f . t r a n s C o n s t )

123 s e l f . g r i d . addWidget ( s e l f . sendCons t , i +4 ,1 )

124

125 s e l f . r e a d C o n s t = QtGui . QPushButton (’Read Constants From Device’ , s e l f )

126 s e l f . r e a d C o n s t . c l i c k e d . c o n n e c t ( s e l f . LoadVars )

127 s e l f . g r i d . addWidget ( s e l f . r eadCons t , i +4 ,0 )

128

129 s e l f . s e t L a y o u t ( s e l f . g r i d )

130 s e l f . show ( )

131

132 def ShowGraph ( s e l f ) :

133 s e l f . u i . r e s p o n d (’t’ , s e l f . temp )

134 s e l f . show ( )
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135

136 def f i l e O u t p u t ( s e l f ) :

137 if ( s e l f . temp . f o u t ) :

138 s e l f . temp . k i l l F o u t ( )

139 s e l f . Fout . s e t T e x t (’Start Outputting to File’ )

140 else :

141 fName , ok1 = QtGui . Q I n p u t D i a l o g . g e t T e x t ( s e l f , ’Open File - File Name’ , ’Please enter a short

filename:’ )

142 desc , ok2 = QtGui . Q I n p u t D i a l o g . g e t T e x t ( s e l f , ’Open File - Description’ , ’Please enter a short

description of the measurements:’ )

143 if ( ok1 and ok2 ) :

144 s e l f . temp . s t a r t F o u t ( fName , desc )

145 s e l f . Fout . s e t T e x t (’Stop Outputting to File’ )

146

147 def e v e n t s ( s e l f ) :

148 buf fe rGood = s e l f . a r d . b u f f e r o k ( )

149 if ( bu f fe rGood ) :

150 if ( s e l f . temp . g raph ) :

151 s e l f . temp . reDraw ( )

152

153 s t a t O u t = s e l f . temp . s t a t s ( )

154 if ( s t a t O u t ) :

155 s e l f . l a s tTemp . s e t T e x t (str ( s t a t O u t [ 1 ] ) )

156 s e l f . l a s t T i m e . s e t T e x t ( t ime . c t i m e ( s t a t O u t [ 0 ] ) )

157 s e l f . varTemp . s e t T e x t (str ( s t a t O u t [ 3 ] ) )

158 s e l f . avTemp . s e t T e x t (str ( s t a t O u t [ 2 ] ) )

159 s e l f . peakTemp . s e t T e x t (str ( s t a t O u t [ 4 ] ) )

160 s e l f . t i m e r . s t a r t ( s e l f . Maxt imerVal )

161

162 def LoadVars ( s e l f ) :

163 v a l u e = s e l f . a r d . g e t C o n s t a n t s ( )

164 s e l f . k p E d i t . s e t T e x t ( v a l u e [ 0 ] )

165 s e l f . k i E d i t . s e t T e x t ( v a l u e [ 1 ] )

166 s e l f . k d E d i t . s e t T e x t ( v a l u e [ 2 ] )
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167 s e l f . t a r T e m p E d i t . s e t T e x t ( v a l u e [ 3 ] )

168 s e l f . a l l o w e d D e l t a E d i t . s e t T e x t ( v a l u e [ 4 ] )

169

170 def t r a n s C o n s t ( s e l f ) :

171 Kp = s e l f . k p E d i t . t e x t ( )

172 Ki = s e l f . k i E d i t . t e x t ( )

173 Kd = s e l f . k d E d i t . t e x t ( )

174 s e t p o i n t = s e l f . t a r T e m p E d i t . t e x t ( )

175 a c c u r a c y = s e l f . a l l o w e d D e l t a E d i t . t e x t ( )

176 try :

177 Kp = float ( Kp )

178 Ki = float ( Ki )

179 Kd = float ( Kd )

180 s e t p o i n t = float ( s e t p o i n t )

181 a c c u r a c y = float ( a c c u r a c y )

182 except E x c e p t i o n :

183 QtGui . QMessageBox . a b o u t ( s e l f , ’Error’ ,’Input can only be a number’ )

184 return

185 s e l f . a r d . s e n d C o n s t a n t s ( Kp , Ki , Kd , s e t p o i n t , a c c u r a c y )

H.2 Widgets

The following programs were useful to convert data between different formats.

H.2.1 EpochToTime.py

A small widget to convert a time since unix epoch into a human readable date and time.

1 from t ime import c t i m e

2

3 t = float (raw_input ("Please enter seconds since the Epoch: " ) )

4

5 print "Time is: " , c t i m e ( t )
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H.2.2 plotData.py

A widget to plot data output by the program.

1 ## File to produce plot from data files

2

3 #=============================================

4 #˜˜˜˜˜ Arduino Temprature Controller ˜˜˜˜˜˜˜

5 #---------------------------------------------

6 # Interface Code

7 v e r s i o n = 1

8 # Author - Aaron Jones

9 # Date: 12 Jan 2015

10 # Copyright Aaron Jones, 2015

11 #---------------------------------------------

12 # What does this file do?

13 # This file reads data generated by the

14 # controller and prints a graph

15 # How to use

16 # Pass the main file as the first argument

17 # when running the script. The file will

18 # also find and read the buffer file automatically

19 # Example

20 # python plotData.py "file1.dat"

21 # This will load file1-buff.dat followed by

22 # file1.dat and produce a graph

23 # =============================================

24

25 import numpy as np

26 import s y s

27 import p y l a b

28 import m a t p l o t l i b . p y p l o t a s p l t

29

30 m a i n F i l e = s y s . a rgv [ 1 ] # Use value from the command as the main file

31 i n d e x = m a i n F i l e . f i n d (’.dat’ ) #Identify the insertion point

32 b u f f F i l e = m a i n F i l e [ : i n d e x ] + ’-buff’ + m a i n F i l e [ i n d e x : ] #and generate the name of the buffer file
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33

34 xda ta , y d a t a = np . l o a d t x t ( b u f f F i l e , d t y p e =’float’ , comments=’#’ , d e l i m i t e r =’,’ , c o n v e r t e r s =None ,

s k i p r o w s =0 , unpack=True , ndmin =0)

35 # Load the buffer file

36 xda ta1 , y d a t a 1 = np . l o a d t x t ( ma inF i l e , d t y p e =’float’ , comments=’#’ , d e l i m i t e r =’,’ , c o n v e r t e r s =None ,

s k i p r o w s =0 , unpack=True , ndmin =0)

37 #Load the main file

38

39 t ime = np . append ( xda ta , x d a t a 1 )

40 temp = np . append ( yda ta , y d a t a 1 )

41 #Append the main data onto the buffer data

42

43 meanT = np . mean ( temp )

44 s tdT = np . s t d ( temp )

45

46 print "Mean Temprature: " , meanT

47 print "Standard Deviation: " , s t dT

48

49 p l t . i o n ( ) # Enable interactive mode, if not already

50 f i g = p l t . f i g u r e ( ) # Create figure, store pointer

51 axes = f i g . a d d s u b p l o t ( 1 1 1 ) # Add subplot (dont worry only one plot appears)

52 l , = p l t . p l o t ( t ime , temp ,’x-’ ) # Plot data

53 axes . s e t a u t o s c a l e o n ( True ) # enable autoscale

54 axes . a u t o s c a l e v i e w ( True , True , True )

55 axes . r e l i m ( ) #Calculate limits

56 p l t . x l a b e l (’Time’ ) # Label Axis

57 p l t . y l a b e l (’Temprature’ )

58 p l t . t i t l e (’Temprature data for target temprature equal to ambiant temprature’ ) # Add title

59 p l t . g r i d ( ) # Add grid

60 p l t . show ( b l o c k = True ) # Enable block to graph stays open

H.2.3 ArduinoSim.py

A widget to simulate the Arduino on Linux (sorry windows users).
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1 # ==========================

2 # Arduino Simulator for Linux

3 #==========================

4 # Copyright Aaron Jones, 2015

5 # The following code sends data over a serial emulator as described in the following answer

6 # http://stackoverflow.com/questions/52187/virtual-serial-port-for-linux

7 #Complementing the @slonik’s answer.

8 #You can test socat to create Virtual Serial Port doing the following procedure (tested on Ubuntu

12.04):

9 #Open a terminal (let’s call it Terminal 0) and execute it:

10 # socat -d -d pty,raw,echo=0 pty,raw,echo=0

11 #The code above returns:

12 # 2013/11/01 13:47:27 socat[2506] N PTY is /dev/pts/2

13 # 2013/11/01 13:47:27 socat[2506] N PTY is /dev/pts/3

14 # 2013/11/01 13:47:27 socat[2506] N starting data transfer loop with FDs [3,3] and [5,5]

15 #Open another terminal and write (Terminal 1):

16 # cat < /dev/pts/2

17 #Open another terminal and write (Terminal 2):

18 # echo "Test" > /dev/pts/3

19 #Now back to Terminal 1 and you’ll see the string "Test".

20

21 import s e r i a l

22 import s t r u c t

23 import t ime

24 import numpy as np

25 s e r = s e r i a l . S e r i a l (’/dev/pts/10’ , 9600)

26 s e r . w r i t e (’h\n’ )

27 while True :

28 o u t = 21 + np . random . random ( )

29 print o u t

30 s e r . w r i t e (’d’ )

31 s e r . w r i t e (str ( o u t ) )

32 s e r . w r i t e (’\n’ )

33 t ime . s l e e p ( 1 )
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34 #Comment

H.2.4 R2T.py

A widget to convert a resistance of a ThorLabs 10K to a temperature

1 # Suitable for 3,599 < R < 32,770

2

3 from math import log , pow

4

5 a = 3 .3540170 e−03

6 b = 2 .5617244 e−04

7 c = 2 .1400943 e−06

8 d = −7.2405217 e−08

9 Rt = 10000

10

11 R = float (raw_input ("Please enter resistance" ) )

12 c o n s t = a

13 l i n e a r = b ∗ ( l o g (R / Rt ) )

14 quad = c ∗ ( l o g (pow ( ( R / Rt ) , 2 ) ) )

15 c u b i c = d ∗ ( l o g (pow ( ( R / Rt ) , 3 ) ) )

16

17 T = 1 / ( c o n s t + l i n e a r + quad + c u b i c )

18

19 #print const

20 #print linear

21 #print quad

22 #print cubic

23

24 print "The temprature is " , T , "k"

25 T = T − 273 .15

26 print "The temprature is " , T , "C"
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H.2.5 T2R.py

A widget to convert a temperature to the resistance of a ThorLabs 10K

1 # Suitable for 3,599 < R < 32,770

2

3 from math import exp , pow

4

5 a = −1.5470381 e1

6 b = 5 .6022839 e3

7 c = −3.7886070 e5

8 d = 2 .4971623 e7

9 Rt = 10000

10

11 T = float (raw_input ("Please enter a temprature in C between 0 and 50: " ) )

12 T = T + 273 .15

13 c o n s t = a

14 l i n e a r = b / T

15 quad = c / ( pow ( T , 2 ) )

16 c u b i c = d / ( pow ( T , 3 ) )

17

18 R = Rt∗exp ( c o n s t + l i n e a r + quad + c u b i c )

19

20 #print const

21 #print linear

22 #print quad

23 #print cubic

24

25 print "The resistance is " , R , " Omhs"
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